这是C++代码的一块 显示一些非常特殊的行为
由于某种原因,对数据进行分类(在时间区之前)奇迹般地使主要循环速度快近六倍:
#include
#include
#include
int main()
{
// Generate data
const unsigned arraySize = 32768;
int data[arraySize];
for (unsigned c = 0; c < arraySize; ++c)
data[c] = std::rand() % 256;
// !!! With this, the next loop runs faster.
std::sort(data, data + arraySize);
// Test
clock_t start = clock();
long long sum = 0;
for (unsigned i = 0; i < 100000; ++i)
{
for (unsigned c = 0; c < arraySize; ++c)
{ // Primary loop.
if (data[c] >= 128)
sum += data[c];
}
}
double elapsedTime = static_cast(clock()-start) / CLOCKS_PER_SEC;
std::cout << elapsedTime << '\n';
std::cout << "sum = " << sum << '\n';
}
没有 std: sort( 数据, 数据+数组Size); 代码在 11. 54 秒内运行。 有了分类数据, 代码在 1. 93 秒内运行 。
(分类本身需要的时间比这个通过数组的时间要长, 所以如果我们需要计算未知数组, 它实际上不值得做 。)
起初,我以为这只是一种语言或编译器异常, 所以我尝试了爪哇:
import java.util.Arrays;
import java.util.Random;
public class Main
{
public static void main(String[] args)
{
// Generate data
int arraySize = 32768;
int data[] = new int[arraySize];
Random rnd = new Random(0);
for (int c = 0; c < arraySize; ++c)
data[c] = rnd.nextInt() % 256;
// !!! With this, the next loop runs faster
Arrays.sort(data);
// Test
long start = System.nanoTime();
long sum = 0;
for (int i = 0; i < 100000; ++i)
{
for (int c = 0; c < arraySize; ++c)
{ // Primary loop.
if (data[c] >= 128)
sum += data[c];
}
}
System.out.println((System.nanoTime() - start) / 1000000000.0);
System.out.println("sum = " + sum);
}
}
其结果类似,但不太极端。
我的第一个想法是排序 将数据带入缓存, 但这是愚蠢的,因为数组 刚刚生成。
为什么处理一个分类阵列的速度要快于处理一个未分类阵列的速度?
守则正在总结一些独立的术语,因此命令不应重要。
与不同的/后来的汇编者和备选办法具有相同效果:
为什么处理一个未排列的阵列的速度与处理一个用现代 x86-64 叮当的排序阵列的速度相同? gcc 优化标记 -O3 使代码慢于 -O2
我用MATLAB 2011b 和我的MacBook Pro(Intel i7, 64位, 2.4 GHz) 尝试了以下MATLAB 代码的相同代码 :
% Processing time with Sorted data vs unsorted data
%==========================================================================
% Generate data
arraySize = 32768
sum = 0;
% Generate random integer data from range 0 to 255
data = randi(256, arraySize, 1);
%Sort the data
data1= sort(data); % data1= data when no sorting done
%Start a stopwatch timer to measure the execution time
tic;
for i=1:100000
for j=1:arraySize
if data1(j)>=128
sum=sum + data1(j);
end
end
end
toc;
ExeTimeWithSorting = toc - tic;
上述MATLAB代码的结果如下:
a: Elapsed time (without sorting) = 3479.880861 seconds.
b: Elapsed time (with sorting ) = 2377.873098 seconds.
校对:Soup
a: Elapsed time (without sorting) = 19.8761 sec.
b: Elapsed time (with sorting ) = 7.37778 sec.
基于这一点,看来MATLAB比C执行慢了175倍,没有分类,比C执行慢了350倍,换言之,(分支预测)MATLAB执行效果为1.46x,C执行效果为2.7x。
在同一行中(我认为没有任何答案强调这一点),最好提到有时(特别是在软件中,在软件中,性能很重要——如Linux内核),如果声明如下,你可以找到一些:
if (likely( everything_is_ok ))
{
/* Do something */
}
或类似:
if (unlikely(very_improbable_condition))
{
/* Do something */
}
可能性 () 和 可能性 () 实际上都是宏, 其定义是使用海合会的 ` 内建_ 期望 ' 来帮助编译者插入预测代码, 以考虑到用户提供的信息, 从而有利于该条件。 海合会支持其他能够改变运行程序的行为或发布低级别指令, 如清除缓存等 。 请参见此文档, 内容可以通过海合会的现有内建 。
通常这种优化主要在硬实时应用程序或内嵌系统中找到,在这些系统中,执行时间很重要且至关重要。例如,如果您正在检查某些错误条件,而错误条件只发生1/10000 000次,那么为什么不通知编译者?这样,默认情况下,分支预测会假设该条件是假的。
如果您对这个代码可以做的更多优化感到好奇, 请考虑 :
以原始循环开始 :
for (unsigned i = 0; i < 100000; ++i)
{
for (unsigned j = 0; j < arraySize; ++j)
{
if (data[j] >= 128)
sum += data[j];
}
}
通过循环互换,我们可以安全地将这一循环改为:
for (unsigned j = 0; j < arraySize; ++j)
{
for (unsigned i = 0; i < 100000; ++i)
{
if (data[j] >= 128)
sum += data[j];
}
}
然后,你可以看到,如果条件是不变的 在整个执行 i 循环, 所以你可以拉起,如果:
for (unsigned j = 0; j < arraySize; ++j)
{
if (data[j] >= 128)
{
for (unsigned i = 0; i < 100000; ++i)
{
sum += data[j];
}
}
}
然后,你看,内环会崩溃成一个单一的表达式, 假设浮点模型允许它(/ fp: fast 被丢弃, 例如)
for (unsigned j = 0; j < arraySize; ++j)
{
if (data[j] >= 128)
{
sum += data[j] * 100000;
}
}
这比以前快了十万倍
在分类的情况下,你可以做的比依靠成功的分支预测或任何无分支比较的把戏:完全删除分支。
事实上,阵列被分割在一个毗连区,数据小于128,另一个数据小于128。 因此,你应该用二组搜索(使用 Lg(数组)=15 比较)找到分区点,然后从该点进行直线积累。
类似的东西( 未检查 )
int i= 0, j, k= arraySize;
while (i < k)
{
j= (i + k) >> 1;
if (data[j] >= 128)
k= j;
else
i= j;
}
sum= 0;
for (; i < arraySize; i++)
sum+= data[i];
或, 略微糊涂
int i, k, j= (i + k) >> 1;
for (i= 0, k= arraySize; i < k; (data[j] >= 128 ? k : i)= j)
j= (i + k) >> 1;
for (sum= 0; i < arraySize; i++)
sum+= data[i];
一种既快又快的方法,为分类或未分类两种方法提供了大致的解决办法,即:总和=3137536;(假设真正统一分布,预计价值为191.5的16384个样品:-)