当我开始学习口齿不清时,我遇到了“尾部递归”这个词。这到底是什么意思?


当前回答

对我来说,理解尾调用递归的最好方法是递归的一种特殊情况,其中最后一个调用(或尾调用)是函数本身。

比较Python中提供的示例:

def recsum(x):
 if x == 1:
  return x
 else:
  return x + recsum(x - 1)

^递归

def tailrecsum(x, running_total=0):
  if x == 0:
    return running_total
  else:
    return tailrecsum(x - 1, running_total + x)

^尾部递归

正如您在常规递归版本中看到的,代码块中的最后一个调用是x+recsum(x-1)。所以在调用recsum方法之后,还有一个操作是x+。。。

然而,在尾部递归版本中,代码块中的最后一个调用(或尾部调用)是tailrecsum(x-1,running_total+x),这意味着最后一次调用是对方法本身进行的,之后不再进行操作。

这一点很重要,因为这里看到的尾部递归不会使内存增长,因为当底层VM看到一个函数在尾部位置(函数中要计算的最后一个表达式)调用自己时,它会消除当前堆栈帧,这就是所谓的尾部调用优化(TCO)。

EDIT

没有。请记住,上面的示例是用Python编写的,其运行时不支持TCO。这只是一个解释这一点的例子。在Scheme、Haskell等语言中支持TCO

其他回答

这是《计算机程序的结构和解释》中关于尾部递归的摘录。

在对比迭代和递归时,我们必须小心不要将递归过程的概念与递归过程。当我们将过程描述为递归时指过程定义所指的句法事实(直接或间接)到程序本身。但当我们将过程描述为遵循一种模式,即线性递归,我们谈论的是过程如何演变,而不是如何编写过程的语法。这似乎令人不安我们将递归过程(如事实iter)称为生成迭代过程。然而,这个过程实际上是迭代的:它的状态被其三个状态变量完全捕获解释器只需要跟踪三个变量执行该过程。过程和程序之间的区别可能是令人困惑的是,大多数通用语言的实现(包括Ada、Pascal和C) 以这样一种方式设计过程消耗的内存量会随着过程调用,迭代。因此,这些语言可以描述迭代仅通过使用专用的“循环构造”来处理例如do、repeat、until、for和while。实施方案不具有此缺陷。它将在恒定空间中执行迭代过程,即使迭代过程由递归过程描述。一具有此属性的实现称为尾部递归。用一个尾部递归实现,可以使用普通过程调用机制,使特殊迭代构造只作为句法糖有用。

尾部递归函数是一个递归函数,它在返回之前执行的最后一个操作是调用递归函数。也就是说,递归函数调用的返回值将立即返回。例如,您的代码如下所示:

def recursiveFunction(some_params):
    # some code here
    return recursiveFunction(some_args)
    # no code after the return statement

实现尾部调用优化或尾部调用消除的编译器和解释器可以优化递归代码以防止堆栈溢出。如果您的编译器或解释器没有实现尾部调用优化(例如CPython解释器),那么用这种方式编写代码不会有额外的好处。

例如,这是Python中的标准递归阶乘函数:

def factorial(number):
    if number == 1:
        # BASE CASE
        return 1
    else:
        # RECURSIVE CASE
        # Note that `number *` happens *after* the recursive call.
        # This means that this is *not* tail call recursion.
        return number * factorial(number - 1)

这是阶乘函数的尾调用递归版本:

def factorial(number, accumulator=1):
    if number == 0:
        # BASE CASE
        return accumulator
    else:
        # RECURSIVE CASE
        # There's no code after the recursive call.
        # This is tail call recursion:
        return factorial(number - 1, number * accumulator)
print(factorial(5))

(请注意,即使这是Python代码,CPython解释器也不会进行尾部调用优化,因此这样安排代码不会带来运行时的好处。)

您可能需要使代码更不可读,才能利用尾部调用优化,如阶乘示例所示。(例如,基本情况现在有点不直观,累加器参数被有效地用作一种全局变量。)

但尾部调用优化的好处是它可以防止堆栈溢出错误。(我会注意到,通过使用迭代算法而不是递归算法,您可以获得同样的好处。)

当调用堆栈推送了太多帧对象时,会导致堆栈溢出。当调用函数时,框架对象被推到调用堆栈上,当函数返回时,框架将从调用堆栈中弹出。框架对象包含诸如局部变量以及函数返回时要返回的代码行之类的信息。

如果递归函数进行了太多递归调用而没有返回,则调用堆栈可能会超出其帧对象限制。(数量因平台而异;在Python中默认为1000个帧对象。)这会导致堆栈溢出错误。(嘿,这就是这个网站的名字来源!)

但是,如果递归函数做的最后一件事是进行递归调用并返回其返回值,那么它就没有理由保持当前帧对象需要停留在调用堆栈上。毕竟,如果递归函数调用后没有代码,就没有理由挂起当前帧对象的局部变量。因此,我们可以立即删除当前帧对象,而不是将其保留在调用堆栈中。这样做的最终结果是,调用堆栈的大小不会增加,因此不会出现堆栈溢出。

编译器或解释器必须具有尾部调用优化功能,以便能够识别何时可以应用尾部调用优化。即使如此,您可能已经重新排列了递归函数中的代码,以利用尾部调用优化,这取决于您是否值得优化可读性的潜在降低。

尾部递归是函数调用的递归函数自身位于函数的末尾(“尾部”),其中没有计算在递归调用返回后完成。许多编译器优化以将递归调用更改为尾部递归调用或迭代调用。

考虑计算一个数的阶乘的问题。

一种简单的方法是:

  factorial(n):

    if n==0 then 1

    else n*factorial(n-1)

假设你调用阶乘(4)。递归树为:

       factorial(4)
       /        \
      4      factorial(3)
     /             \
    3          factorial(2)
   /                  \
  2                factorial(1)
 /                       \
1                       factorial(0)
                            \
                             1    

上述情况下的最大递归深度为O(n)。

但是,请考虑以下示例:

factAux(m,n):
if n==0  then m;
else     factAux(m*n,n-1);

factTail(n):
   return factAux(1,n);

factTail(4)的递归树为:

factTail(4)
   |
factAux(1,4)
   |
factAux(4,3)
   |
factAux(12,2)
   |
factAux(24,1)
   |
factAux(24,0)
   |
  24

这里,最大递归深度是O(n),但没有一个调用向堆栈添加任何额外变量。因此编译器可以取消堆栈。

递归意味着函数调用自身。例如:

(define (un-ended name)
  (un-ended 'me)
  (print "How can I get here?"))

尾部递归是指结束函数的递归:

(define (un-ended name)
  (print "hello")
  (un-ended 'me))

看,非终结函数(Scheme术语中的过程)做的最后一件事就是调用自己。另一个(更有用的)例子是:

(define (map lst op)
  (define (helper done left)
    (if (nil? left)
        done
        (helper (cons (op (car left))
                      done)
                (cdr left))))
  (reverse (helper '() lst)))

在helper过程中,如果左边不是nil,最后一件事就是调用自己(AFTER cons something和cdr something)。这基本上就是如何映射列表的。

尾部递归有一个很大的优点,即解释器(或编译器,取决于语言和供应商)可以对其进行优化,并将其转换为相当于while循环的东西。事实上,在Scheme传统中,大多数“for”和“while”循环都是以尾部递归的方式完成的(据我所知,没有for和while)。

在Java中,以下是斐波那契函数的一个可能的尾部递归实现:

public int tailRecursive(final int n) {
    if (n <= 2)
        return 1;
    return tailRecursiveAux(n, 1, 1);
}

private int tailRecursiveAux(int n, int iter, int acc) {
    if (iter == n)
        return acc;
    return tailRecursiveAux(n, ++iter, acc + iter);
}

与标准递归实现形成对比:

public int recursive(final int n) {
    if (n <= 2)
        return 1;
    return recursive(n - 1) + recursive(n - 2);
}