super()如何处理多重继承?例如,给定:

class First(object):
    def __init__(self):
        print "first"

class Second(object):
    def __init__(self):
        print "second"

class Third(First, Second):
    def __init__(self):
        super(Third, self).__init__()
        print "that's it"

Third的哪个父方法执行super()。__init__ refer to?我可以选择哪些运行吗?

我知道这与方法解析顺序(MRO)有关。


当前回答

我知道这并没有直接回答super()问题,但我觉得它有足够的相关性来分享。

还有一种方法可以直接调用每个继承的类:


class First(object):
    def __init__(self):
        print '1'

class Second(object):
    def __init__(self):
        print '2'

class Third(First, Second):
    def __init__(self):
        Second.__init__(self)

请注意,如果你这样做,你将不得不手动调用每个,因为我很确定First的__init__()不会被调用。

其他回答

我知道这并没有直接回答super()问题,但我觉得它有足够的相关性来分享。

还有一种方法可以直接调用每个继承的类:


class First(object):
    def __init__(self):
        print '1'

class Second(object):
    def __init__(self):
        print '2'

class Third(First, Second):
    def __init__(self):
        Second.__init__(self)

请注意,如果你这样做,你将不得不手动调用每个,因为我很确定First的__init__()不会被调用。

把这个答案贴出来供我将来参考。

Python多重继承应该使用菱形模型,并且函数签名不应该在模型中更改。

    A
   / \
  B   C
   \ /
    D

示例代码片段为;-

class A:
    def __init__(self, name=None):
        #  this is the head of the diamond, no need to call super() here
        self.name = name

class B(A):
    def __init__(self, param1='hello', **kwargs):
        super().__init__(**kwargs)
        self.param1 = param1

class C(A):
    def __init__(self, param2='bye', **kwargs):
        super().__init__(**kwargs)
        self.param2 = param2

class D(B, C):
    def __init__(self, works='fine', **kwargs):
        super().__init__(**kwargs)
        print(f"{works=}, {self.param1=}, {self.param2=}, {self.name=}")

d = D(name='Testing')

这里类A是对象

这就是所谓的钻石问题,该页面有一个关于Python的条目,但简而言之,Python将从左到右调用超类的方法。

在这种情况下,你试图继承的每个类都有自己的init位置参数,只需调用每个类自己的init方法,如果试图继承多个对象,则不要使用super。

class A():
    def __init__(self, x):
        self.x = x

class B():
    def __init__(self, y, z):
        self.y = y
        self.z = z

class C(A, B):
    def __init__(self, x, y, z):
        A.__init__(self, x)
        B.__init__(self, y, z)

>>> c = C(1,2,3)
>>>c.x, c.y, c.z 
(1, 2, 3)

我想补充一下@Visionscaper在开头说的话:

Third --> First --> object --> Second --> object

在这种情况下,解释器不会过滤掉对象类,因为它是重复的,而是因为Second出现在一个层次结构子集的头部位置,而不是尾部位置。而在C3算法中,对象只出现在尾部位置,不被认为是一个强位置来确定优先级。

线性化(mro)的类C, L(C),是

丙类 加上归并 线性化父函数P1, P2, ..= L(P1, P2,… 它的父元素P1, P2, ..

线性化合并是通过选择出现在列表头部而不是尾部的公共类来完成的,因为顺序很重要(下面会清楚地说明)

Third的线性化计算如下:

    L(O)  := [O]  // the linearization(mro) of O(object), because O has no parents

    L(First)  :=  [First] + merge(L(O), [O])
               =  [First] + merge([O], [O])
               =  [First, O]

    // Similarly, 
    L(Second)  := [Second, O]

    L(Third)   := [Third] + merge(L(First), L(Second), [First, Second])
                = [Third] + merge([First, O], [Second, O], [First, Second])
// class First is a good candidate for the first merge step, because it only appears as the head of the first and last lists
// class O is not a good candidate for the next merge step, because it also appears in the tails of list 1 and 2, 
                = [Third, First] + merge([O], [Second, O], [Second])
// class Second is a good candidate for the second merge step, because it appears as the head of the list 2 and 3
                = [Third, First, Second] + merge([O], [O])            
                = [Third, First, Second, O]

因此,对于下面代码中的super()实现:

class First(object):
  def __init__(self):
    super(First, self).__init__()
    print "first"

class Second(object):
  def __init__(self):
    super(Second, self).__init__()
    print "second"

class Third(First, Second):
  def __init__(self):
    super(Third, self).__init__()
    print "that's it"

很明显,这个方法将如何解决

Third.__init__() ---> First.__init__() ---> Second.__init__() ---> 
Object.__init__() ---> returns ---> Second.__init__() -
prints "second" - returns ---> First.__init__() -
prints "first" - returns ---> Third.__init__() - prints "that's it"