super()如何处理多重继承?例如,给定:

class First(object):
    def __init__(self):
        print "first"

class Second(object):
    def __init__(self):
        print "second"

class Third(First, Second):
    def __init__(self):
        super(Third, self).__init__()
        print "that's it"

Third的哪个父方法执行super()。__init__ refer to?我可以选择哪些运行吗?

我知道这与方法解析顺序(MRO)有关。


当前回答

在学习python的过程中,我学到了一个叫做super()的东西,如果没有弄错的话,这是一个内置函数。调用super()函数可以帮助继承通过父节点和“兄弟节点”传递,并帮助你看得更清楚。我仍然是初学者,但我喜欢分享我在python2.7中使用这个super()的经验。

如果您已经阅读了本页中的注释,您将听说方法解析顺序(MRO),该方法是您编写的函数,MRO将使用深度优先的左至右方案来搜索和运行。你可以做更多的研究。

通过添加super()函数

super(First, self).__init__() #example for class First.

你可以用super()连接多个实例和“家族”,方法是添加其中的每个实例和每个人。它会执行这些方法,检查它们,确保你没有错过!然而,在之前或之后添加它们确实会有区别,你会知道你是否已经通过硬路练习学习了python。让乐趣开始吧!!

以下面的例子为例,你可以复制粘贴并试着运行它:

class First(object):
    def __init__(self):

        print("first")

class Second(First):
    def __init__(self):
        print("second (before)")
        super(Second, self).__init__()
        print("second (after)")

class Third(First):
    def __init__(self):
        print("third (before)")
        super(Third, self).__init__()
        print("third (after)")


class Fourth(First):
    def __init__(self):
        print("fourth (before)")
        super(Fourth, self).__init__()
        print("fourth (after)")


class Fifth(Second, Third, Fourth):
    def __init__(self):
        print("fifth (before)")
        super(Fifth, self).__init__()
        print("fifth (after)")

Fifth()

它是如何运行的?fifth()的实例如下所示。每一步从一个类到另一个类,其中添加了超函数。

1.) print("fifth (before)")
2.) super()>[Second, Third, Fourth] (Left to right)
3.) print("second (before)")
4.) super()> First (First is the Parent which inherit from object)

父母已经找到了,会继续到第三和第四!!

5.) print("third (before)")
6.) super()> First (Parent class)
7.) print ("Fourth (before)")
8.) super()> First (Parent class)

现在所有带有super()的类都已经被访问了!父类已经找到并执行,现在它继续在继承中解箱函数以完成代码。

9.) print("first") (Parent)
10.) print ("Fourth (after)") (Class Fourth un-box)
11.) print("third (after)") (Class Third un-box)
12.) print("second (after)") (Class Second un-box)
13.) print("fifth (after)") (Class Fifth un-box)
14.) Fifth() executed

以上方案的成果:

fifth (before)
second (before
third (before)
fourth (before)
first
fourth (after)
third (after)
second (after)
fifth (after)

对我来说,添加super()可以让我更清楚地看到python如何执行我的代码,并确保继承可以访问我想要的方法。

其他回答

这就是我如何解决具有不同初始化变量的多重继承和具有相同函数调用的多个mixin的问题。我必须显式地为传递的**kwargs添加变量,并添加一个MixIn接口作为超级调用的端点。

这里A是一个可扩展的基类,B和C是MixIn类,它们都提供函数f。A和B都在它们的__init__中期望参数v,而C期望w。 函数f接受一个参数y。Q继承了所有三个类。MixInF是B和C的mixin接口。

这段代码的IPython NoteBook Github回购的代码示例


class A(object):
    def __init__(self, v, *args, **kwargs):
        print "A:init:v[{0}]".format(v)
        kwargs['v']=v
        super(A, self).__init__(*args, **kwargs)
        self.v = v


class MixInF(object):
    def __init__(self, *args, **kwargs):
        print "IObject:init"
    def f(self, y):
        print "IObject:y[{0}]".format(y)


class B(MixInF):
    def __init__(self, v, *args, **kwargs):
        print "B:init:v[{0}]".format(v)
        kwargs['v']=v
        super(B, self).__init__(*args, **kwargs)
        self.v = v
    def f(self, y):
        print "B:f:v[{0}]:y[{1}]".format(self.v, y)
        super(B, self).f(y)


class C(MixInF):
    def __init__(self, w, *args, **kwargs):
        print "C:init:w[{0}]".format(w)
        kwargs['w']=w
        super(C, self).__init__(*args, **kwargs)
        self.w = w
    def f(self, y):
        print "C:f:w[{0}]:y[{1}]".format(self.w, y)
        super(C, self).f(y)


class Q(C,B,A):
    def __init__(self, v, w):
        super(Q, self).__init__(v=v, w=w)
    def f(self, y):
        print "Q:f:y[{0}]".format(y)
        super(Q, self).f(y)

我想用“无生命”来详细说明这个答案,因为当我开始阅读如何在Python的多重继承层次结构中使用super()时,我并没有立即得到它。

你需要了解的是super(MyClass, self).__init__()在完整继承层次结构的上下文中根据所使用的方法解析排序(MRO)算法提供下一个__init__方法。

理解这最后一部分至关重要。让我们再考虑一下这个例子:

#!/usr/bin/env python2

class First(object):
  def __init__(self):
    print "First(): entering"
    super(First, self).__init__()
    print "First(): exiting"

class Second(object):
  def __init__(self):
    print "Second(): entering"
    super(Second, self).__init__()
    print "Second(): exiting"

class Third(First, Second):
  def __init__(self):
    print "Third(): entering"
    super(Third, self).__init__()
    print "Third(): exiting"

根据Guido van Rossum关于方法解析顺序的文章,解析__init__的顺序是使用“深度优先的从左到右遍历”来计算的(在Python 2.3之前):

Third --> First --> object --> Second --> object

删除所有重复项后,除了最后一个,我们得到:

Third --> First --> Second --> object

那么,让我们来看看当我们实例化一个Third类的实例时会发生什么,例如x = Third()。

According to MRO Third.__init__ executes. prints Third(): entering then super(Third, self).__init__() executes and MRO returns First.__init__ which is called. First.__init__ executes. prints First(): entering then super(First, self).__init__() executes and MRO returns Second.__init__ which is called. Second.__init__ executes. prints Second(): entering then super(Second, self).__init__() executes and MRO returns object.__init__ which is called. object.__init__ executes (no print statements in the code there) execution goes back to Second.__init__ which then prints Second(): exiting execution goes back to First.__init__ which then prints First(): exiting execution goes back to Third.__init__ which then prints Third(): exiting

这详细说明了为什么实例化Third()会导致:

Third(): entering
First(): entering
Second(): entering
Second(): exiting
First(): exiting
Third(): exiting

从Python 2.3开始,MRO算法已经得到了改进,在复杂的情况下工作得很好,但我猜使用“深度优先的从左到右遍历”+“删除除最后一个重复项之外的重复项”在大多数情况下仍然有效(如果不是这样,请评论)。一定要阅读Guido的博客文章!

在学习python的过程中,我学到了一个叫做super()的东西,如果没有弄错的话,这是一个内置函数。调用super()函数可以帮助继承通过父节点和“兄弟节点”传递,并帮助你看得更清楚。我仍然是初学者,但我喜欢分享我在python2.7中使用这个super()的经验。

如果您已经阅读了本页中的注释,您将听说方法解析顺序(MRO),该方法是您编写的函数,MRO将使用深度优先的左至右方案来搜索和运行。你可以做更多的研究。

通过添加super()函数

super(First, self).__init__() #example for class First.

你可以用super()连接多个实例和“家族”,方法是添加其中的每个实例和每个人。它会执行这些方法,检查它们,确保你没有错过!然而,在之前或之后添加它们确实会有区别,你会知道你是否已经通过硬路练习学习了python。让乐趣开始吧!!

以下面的例子为例,你可以复制粘贴并试着运行它:

class First(object):
    def __init__(self):

        print("first")

class Second(First):
    def __init__(self):
        print("second (before)")
        super(Second, self).__init__()
        print("second (after)")

class Third(First):
    def __init__(self):
        print("third (before)")
        super(Third, self).__init__()
        print("third (after)")


class Fourth(First):
    def __init__(self):
        print("fourth (before)")
        super(Fourth, self).__init__()
        print("fourth (after)")


class Fifth(Second, Third, Fourth):
    def __init__(self):
        print("fifth (before)")
        super(Fifth, self).__init__()
        print("fifth (after)")

Fifth()

它是如何运行的?fifth()的实例如下所示。每一步从一个类到另一个类,其中添加了超函数。

1.) print("fifth (before)")
2.) super()>[Second, Third, Fourth] (Left to right)
3.) print("second (before)")
4.) super()> First (First is the Parent which inherit from object)

父母已经找到了,会继续到第三和第四!!

5.) print("third (before)")
6.) super()> First (Parent class)
7.) print ("Fourth (before)")
8.) super()> First (Parent class)

现在所有带有super()的类都已经被访问了!父类已经找到并执行,现在它继续在继承中解箱函数以完成代码。

9.) print("first") (Parent)
10.) print ("Fourth (after)") (Class Fourth un-box)
11.) print("third (after)") (Class Third un-box)
12.) print("second (after)") (Class Second un-box)
13.) print("fifth (after)") (Class Fifth un-box)
14.) Fifth() executed

以上方案的成果:

fifth (before)
second (before
third (before)
fourth (before)
first
fourth (after)
third (after)
second (after)
fifth (after)

对我来说,添加super()可以让我更清楚地看到python如何执行我的代码,并确保继承可以访问我想要的方法。

另一个尚未涉及的点是传递初始化类的参数。由于super的目标取决于子类,传递参数的唯一好方法是将它们打包在一起。然后注意不要让相同的参数名具有不同的含义。

例子:

class A(object):
    def __init__(self, **kwargs):
        print('A.__init__')
        super().__init__()

class B(A):
    def __init__(self, **kwargs):
        print('B.__init__ {}'.format(kwargs['x']))
        super().__init__(**kwargs)


class C(A):
    def __init__(self, **kwargs):
        print('C.__init__ with {}, {}'.format(kwargs['a'], kwargs['b']))
        super().__init__(**kwargs)


class D(B, C): # MRO=D, B, C, A
    def __init__(self):
        print('D.__init__')
        super().__init__(a=1, b=2, x=3)

print(D.mro())
D()

给:

[<class '__main__.D'>, <class '__main__.B'>, <class '__main__.C'>, <class '__main__.A'>, <class 'object'>]
D.__init__
B.__init__ 3
C.__init__ with 1, 2
A.__init__

直接调用超类__init__来更直接地赋值参数是很诱人的,但如果在超类中有任何超调用和/或MRO被更改并且类a可能被多次调用,则会失败,这取决于实现。

总结一下:合作继承和初始化的超参数和特定参数不能很好地协同工作。

关于@calfzhou的评论,你可以像往常一样使用**kwargs:

在线运行示例

class A(object):
  def __init__(self, a, *args, **kwargs):
    print("A", a)

class B(A):
  def __init__(self, b, *args, **kwargs):
    super(B, self).__init__(*args, **kwargs)
    print("B", b)

class A1(A):
  def __init__(self, a1, *args, **kwargs):
    super(A1, self).__init__(*args, **kwargs)
    print("A1", a1)

class B1(A1, B):
  def __init__(self, b1, *args, **kwargs):
    super(B1, self).__init__(*args, **kwargs)
    print("B1", b1)


B1(a1=6, b1=5, b="hello", a=None)

结果:

A None
B hello
A1 6
B1 5

你也可以在不同的位置使用它们:

B1(5, 6, b="hello", a=None)

但你必须记住MRO,它真的很混乱。你可以通过使用关键字参数来避免这种情况:

class A(object):
  def __init__(self, *args, a, **kwargs):
    print("A", a)

等等。

我可能有点烦人,但我注意到人们每次重写一个方法时都会忘记使用*args和**kwargs,而这是这些“神奇变量”为数不多的真正有用和理智的使用之一。