我有一组整数。我想用动态规划的方法求出这个集合的最长递增子序列。
当前回答
下面的c++实现还包括一些使用名为prev的数组构建实际最长递增子序列的代码。
std::vector<int> longest_increasing_subsequence (const std::vector<int>& s)
{
int best_end = 0;
int sz = s.size();
if (!sz)
return std::vector<int>();
std::vector<int> prev(sz,-1);
std::vector<int> memo(sz, 0);
int max_length = std::numeric_limits<int>::min();
memo[0] = 1;
for ( auto i = 1; i < sz; ++i)
{
for ( auto j = 0; j < i; ++j)
{
if ( s[j] < s[i] && memo[i] < memo[j] + 1 )
{
memo[i] = memo[j] + 1;
prev[i] = j;
}
}
if ( memo[i] > max_length )
{
best_end = i;
max_length = memo[i];
}
}
// Code that builds the longest increasing subsequence using "prev"
std::vector<int> results;
results.reserve(sz);
std::stack<int> stk;
int current = best_end;
while (current != -1)
{
stk.push(s[current]);
current = prev[current];
}
while (!stk.empty())
{
results.push_back(stk.top());
stk.pop();
}
return results;
}
没有堆栈的实现只是反转向量
#include <iostream>
#include <vector>
#include <limits>
std::vector<int> LIS( const std::vector<int> &v ) {
auto sz = v.size();
if(!sz)
return v;
std::vector<int> memo(sz, 0);
std::vector<int> prev(sz, -1);
memo[0] = 1;
int best_end = 0;
int max_length = std::numeric_limits<int>::min();
for (auto i = 1; i < sz; ++i) {
for ( auto j = 0; j < i ; ++j) {
if (s[j] < s[i] && memo[i] < memo[j] + 1) {
memo[i] = memo[j] + 1;
prev[i] = j;
}
}
if(memo[i] > max_length) {
best_end = i;
max_length = memo[i];
}
}
// create results
std::vector<int> results;
results.reserve(v.size());
auto current = best_end;
while (current != -1) {
results.push_back(s[current]);
current = prev[current];
}
std::reverse(results.begin(), results.end());
return results;
}
其他回答
说到DP solution,我发现很奇怪的是没有人提到LIS可以简化为LCS。你所需要做的就是对原始序列的副本进行排序,删除所有重复的副本,然后对它们进行LCS。在伪代码中是:
def LIS(S):
T = sort(S)
T = removeDuplicates(T)
return LCS(S, T)
以及用Go语言编写的完整实现。如果你不需要重构解,你就不需要维护整个n^2 DP矩阵。
func lcs(arr1 []int) int {
arr2 := make([]int, len(arr1))
for i, v := range arr1 {
arr2[i] = v
}
sort.Ints(arr1)
arr3 := []int{}
prev := arr1[0] - 1
for _, v := range arr1 {
if v != prev {
prev = v
arr3 = append(arr3, v)
}
}
n1, n2 := len(arr1), len(arr3)
M := make([][]int, n2 + 1)
e := make([]int, (n1 + 1) * (n2 + 1))
for i := range M {
M[i] = e[i * (n1 + 1):(i + 1) * (n1 + 1)]
}
for i := 1; i <= n2; i++ {
for j := 1; j <= n1; j++ {
if arr2[j - 1] == arr3[i - 1] {
M[i][j] = M[i - 1][j - 1] + 1
} else if M[i - 1][j] > M[i][j - 1] {
M[i][j] = M[i - 1][j]
} else {
M[i][j] = M[i][j - 1]
}
}
}
return M[n2][n1]
}
下面是从动态规划的角度评估问题的三个步骤:
递归定义:maxLength(i) == 1 + maxLength(j) where 0 < j < i and array[i] > array[j] 递归参数边界:可能有0到i - 1个子序列作为参数传递 求值顺序:由于是递增子序列,所以要从0求值到n
如果我们以序列{0,8,2,3,7,9}为例,at index:
我们会得到子序列{0}作为基本情况 [1]有一个新的子序列{0,8} [2]试图评估两个新的序列{0,8,2}和{0,2}通过添加元素在索引2到现有的子序列-只有一个是有效的,所以添加第三个可能的序列{0,2}只到参数列表 ...
下面是c++ 11的工作代码:
#include <iostream>
#include <vector>
int getLongestIncSub(const std::vector<int> &sequence, size_t index, std::vector<std::vector<int>> &sub) {
if(index == 0) {
sub.push_back(std::vector<int>{sequence[0]});
return 1;
}
size_t longestSubSeq = getLongestIncSub(sequence, index - 1, sub);
std::vector<std::vector<int>> tmpSubSeq;
for(std::vector<int> &subSeq : sub) {
if(subSeq[subSeq.size() - 1] < sequence[index]) {
std::vector<int> newSeq(subSeq);
newSeq.push_back(sequence[index]);
longestSubSeq = std::max(longestSubSeq, newSeq.size());
tmpSubSeq.push_back(newSeq);
}
}
std::copy(tmpSubSeq.begin(), tmpSubSeq.end(),
std::back_insert_iterator<std::vector<std::vector<int>>>(sub));
return longestSubSeq;
}
int getLongestIncSub(const std::vector<int> &sequence) {
std::vector<std::vector<int>> sub;
return getLongestIncSub(sequence, sequence.size() - 1, sub);
}
int main()
{
std::vector<int> seq{0, 8, 2, 3, 7, 9};
std::cout << getLongestIncSub(seq);
return 0;
}
最长递增子序列(Java)
import java.util.*;
class ChainHighestValue implements Comparable<ChainHighestValue>{
int highestValue;
int chainLength;
ChainHighestValue(int highestValue,int chainLength) {
this.highestValue = highestValue;
this.chainLength = chainLength;
}
@Override
public int compareTo(ChainHighestValue o) {
return this.chainLength-o.chainLength;
}
}
public class LongestIncreasingSubsequenceLinkedList {
private static LinkedList<Integer> LongestSubsequent(int arr[], int size){
ArrayList<LinkedList<Integer>> seqList=new ArrayList<>();
ArrayList<ChainHighestValue> valuePairs=new ArrayList<>();
for(int i=0;i<size;i++){
int currValue=arr[i];
if(valuePairs.size()==0){
LinkedList<Integer> aList=new LinkedList<>();
aList.add(arr[i]);
seqList.add(aList);
valuePairs.add(new ChainHighestValue(arr[i],1));
}else{
try{
ChainHighestValue heighestIndex=valuePairs.stream().filter(e->e.highestValue<currValue).max(ChainHighestValue::compareTo).get();
int index=valuePairs.indexOf(heighestIndex);
seqList.get(index).add(arr[i]);
heighestIndex.highestValue=arr[i];
heighestIndex.chainLength+=1;
}catch (Exception e){
LinkedList<Integer> aList=new LinkedList<>();
aList.add(arr[i]);
seqList.add(aList);
valuePairs.add(new ChainHighestValue(arr[i],1));
}
}
}
ChainHighestValue heighestIndex=valuePairs.stream().max(ChainHighestValue::compareTo).get();
int index=valuePairs.indexOf(heighestIndex);
return seqList.get(index);
}
public static void main(String[] args){
int arry[]={5,1,3,6,11,30,32,5,3,73,79};
//int arryB[]={3,1,5,2,6,4,9};
LinkedList<Integer> LIS=LongestSubsequent(arry, arry.length);
System.out.println("Longest Incrementing Subsequence:");
for(Integer a: LIS){
System.out.print(a+" ");
}
}
}
下面是O(n^2)算法的Scala实现:
object Solve {
def longestIncrSubseq[T](xs: List[T])(implicit ord: Ordering[T]) = {
xs.foldLeft(List[(Int, List[T])]()) {
(sofar, x) =>
if (sofar.isEmpty) List((1, List(x)))
else {
val resIfEndsAtCurr = (sofar, xs).zipped map {
(tp, y) =>
val len = tp._1
val seq = tp._2
if (ord.lteq(y, x)) {
(len + 1, x :: seq) // reversely recorded to avoid O(n)
} else {
(1, List(x))
}
}
sofar :+ resIfEndsAtCurr.maxBy(_._1)
}
}.maxBy(_._1)._2.reverse
}
def main(args: Array[String]) = {
println(longestIncrSubseq(List(
0, 8, 4, 12, 2, 10, 6, 14, 1, 9, 5, 13, 3, 11, 7, 15)))
}
}
这可以用动态规划在O(n²)中解决。同样的Python代码是这样的:-
def LIS(numlist):
LS = [1]
for i in range(1, len(numlist)):
LS.append(1)
for j in range(0, i):
if numlist[i] > numlist[j] and LS[i]<=LS[j]:
LS[i] = 1 + LS[j]
print LS
return max(LS)
numlist = map(int, raw_input().split(' '))
print LIS(numlist)
输入:5 19 5 81 50 28 29 1 83 23
输出将是:[1,2,1,3,3,3,4,1,5,3] 5
输出列表的list_index是输入列表的list_index。输出列表中给定list_index的值表示该list_index的最长递增子序列长度。