Python中是否有内置或标准的库方法来计算一组数字的算术平均值(一种平均值)?


当前回答

我不知道标准库中的任何东西。然而,你可以使用这样的东西:

def mean(numbers):
    return float(sum(numbers)) / max(len(numbers), 1)

>>> mean([1,2,3,4])
2.5
>>> mean([])
0.0

在numpy中,有numpy.mean()。

其他回答

from statistics import mean
avarage=mean(your_list)

例如

from statistics import mean

my_list=[5,2,3,2]
avarage=mean(my_list)
print(avarage)

结果是

3.0

而不是铸造浮动,你可以做以下

def mean(nums):
    return sum(nums, 0.0) / len(nums)

或者使用

mean = lambda nums: sum(nums, 0.0) / len(nums)

更新:2019-12-15

Python 3.8在统计模块中添加了函数fmean。它更快,总是返回浮点数。

将数据转换为浮点数并计算算术平均值。 这比mean()函数运行得快,并且它总是返回一个 自由浮动。数据可以是序列或可迭代对象。如果输入数据集为 empty则引发StatisticsError。 Fmean ([3.5, 4.0, 5.25]) 4.25 3.8新版功能。

def list_mean(nums):
    sumof = 0
    num_of = len(nums)
    mean = 0
    for i in nums:
        sumof += i
    mean = sumof / num_of
    return float(mean)

我总是认为avg是省略从内置/stdlib,因为它是一样简单

sum(L)/len(L) # L is some list

任何警告都将在本地使用的调用者代码中解决。

值得注意的事项:

非浮点结果:在python2中,9/4为2。要解析,使用float(sum(L))/len(L)或从__future__导入除法 除以0:列表可能为空。解决: 如果不是L: 提高WhateverYouWantError (" foo ") avg = float(sum(L))/len(L)

使用statistics.mean:

import statistics
print(statistics.mean([1,2,4])) # 2.3333333333333335

它从Python 3.4开始可用。对于3.1-3.3用户,PyPI上的stats名称下提供了该模块的旧版本。只需将统计数据更改为统计数据。