好吧——我几乎不好意思在这里张贴这个(如果有人投票关闭,我会删除),因为这似乎是一个基本的问题。

这是在c++中四舍五入到一个数字的倍数的正确方法吗?

我知道还有其他与此相关的问题,但我特别感兴趣的是,在c++中做这件事的最佳方法是什么:

int roundUp(int numToRound, int multiple)
{
 if(multiple == 0)
 {
  return numToRound;
 }

 int roundDown = ( (int) (numToRound) / multiple) * multiple;
 int roundUp = roundDown + multiple; 
 int roundCalc = roundUp;
 return (roundCalc);
}

更新: 抱歉,我可能没把意思说清楚。下面是一些例子:

roundUp(7, 100)
//return 100

roundUp(117, 100)
//return 200

roundUp(477, 100)
//return 500

roundUp(1077, 100)
//return 1100

roundUp(52, 20)
//return 60

roundUp(74, 30)
//return 90

当前回答

c:

int roundUp(int numToRound, int multiple)
{
  return (multiple ? (((numToRound+multiple-1) / multiple) * multiple) : numToRound);
}

对于~/.bashrc:

roundup()
{
  echo $(( ${2} ? ((${1}+${2}-1)/${2})*${2} : ${1} ))
}

其他回答

可能更安全的方法是强制转换为浮点数并使用ceil()—除非您知道int除法将产生正确的结果。

这可能会有所帮助:

int RoundUpToNearestMultOfNumber(int val, int num)
{
  assert(0 != num);
  return (floor((val + num) / num) * num);
}

这将得到正整数的结果:

#include <iostream>
using namespace std;

int roundUp(int numToRound, int multiple);

int main() {
    cout << "answer is: " << roundUp(7, 100) << endl;
    cout << "answer is: " << roundUp(117, 100) << endl;
    cout << "answer is: " << roundUp(477, 100) << endl;
    cout << "answer is: " << roundUp(1077, 100) << endl;
    cout << "answer is: " << roundUp(52,20) << endl;
    cout << "answer is: " << roundUp(74,30) << endl;
    return 0;
}

int roundUp(int numToRound, int multiple) {
    if (multiple == 0) {
        return 0;
    }
    int result = (int) (numToRound / multiple) * multiple;
    if (numToRound % multiple) {
        result += multiple;
    } 
    return result;
}

这里是输出:

answer is: 100
answer is: 200
answer is: 500
answer is: 1100
answer is: 60
answer is: 90
/// Rounding up 'n' to the nearest multiple of number 'b'.
/// - Not tested for negative numbers.
/// \see http://stackoverflow.com/questions/3407012/
#define roundUp(n,b) ( (b)==0 ? (n) : ( ((n)+(b)-1) - (((n)-1)%(b)) ) )

/// \c test->roundUp().
void test_roundUp() {   
    // yes_roundUp(n,b) ( (b)==0 ? (n) : ( (n)%(b)==0 ? n : (n)+(b)-(n)%(b) ) )
    // yes_roundUp(n,b) ( (b)==0 ? (n) : ( ((n + b - 1) / b) * b ) )

    // no_roundUp(n,b) ( (n)%(b)==0 ? n : (b)*( (n)/(b) )+(b) )
    // no_roundUp(n,b) ( (n)+(b) - (n)%(b) )

if (true) // couldn't make it work without (?:)
{{  // test::roundUp()
    unsigned m;
                { m = roundUp(17,8); } ++m;
    assertTrue( 24 == roundUp(17,8) );
                { m = roundUp(24,8); }
    assertTrue( 24 == roundUp(24,8) );

    assertTrue( 24 == roundUp(24,4) );
    assertTrue( 24 == roundUp(23,4) );
                { m = roundUp(23,4); }
    assertTrue( 24 == roundUp(21,4) );

    assertTrue( 20 == roundUp(20,4) );
    assertTrue( 20 == roundUp(19,4) );
    assertTrue( 20 == roundUp(18,4) );
    assertTrue( 20 == roundUp(17,4) );

    assertTrue( 17 == roundUp(17,0) );
    assertTrue( 20 == roundUp(20,0) );
}}
}

以下是我根据OP的建议和其他人给出的例子给出的解决方案。因为大多数人都在寻找它来处理负数,这个解决方案就是这样做的,而不使用任何特殊的功能,如腹肌等。

通过避免使用模数而使用除法,负数是一个自然的结果,尽管它是四舍五入。在计算出向下舍入的版本之后,它会执行所需的数学运算以向上舍入,或者向负方向舍入,或者向正方向舍入。

还要注意的是,没有使用特殊的函数来计算任何东西,所以这里有一个小的速度提升。

int RoundUp(int n, int multiple)
{
    // prevent divide by 0 by returning n
    if (multiple == 0) return n;

    // calculate the rounded down version
    int roundedDown = n / multiple * multiple;

    // if the rounded version and original are the same, then return the original
    if (roundedDown == n) return n;

    // handle negative number and round up according to the sign
    // NOTE: if n is < 0 then subtract the multiple, otherwise add it
    return (n < 0) ? roundedDown - multiple : roundedDown + multiple;
}