好吧——我几乎不好意思在这里张贴这个(如果有人投票关闭,我会删除),因为这似乎是一个基本的问题。

这是在c++中四舍五入到一个数字的倍数的正确方法吗?

我知道还有其他与此相关的问题,但我特别感兴趣的是,在c++中做这件事的最佳方法是什么:

int roundUp(int numToRound, int multiple)
{
 if(multiple == 0)
 {
  return numToRound;
 }

 int roundDown = ( (int) (numToRound) / multiple) * multiple;
 int roundUp = roundDown + multiple; 
 int roundCalc = roundUp;
 return (roundCalc);
}

更新: 抱歉,我可能没把意思说清楚。下面是一些例子:

roundUp(7, 100)
//return 100

roundUp(117, 100)
//return 200

roundUp(477, 100)
//return 500

roundUp(1077, 100)
//return 1100

roundUp(52, 20)
//return 60

roundUp(74, 30)
//return 90

当前回答

无限的可能性,仅适用于有符号整数:

N + ((r - N) % r

其他回答

/// Rounding up 'n' to the nearest multiple of number 'b'.
/// - Not tested for negative numbers.
/// \see http://stackoverflow.com/questions/3407012/
#define roundUp(n,b) ( (b)==0 ? (n) : ( ((n)+(b)-1) - (((n)-1)%(b)) ) )

/// \c test->roundUp().
void test_roundUp() {   
    // yes_roundUp(n,b) ( (b)==0 ? (n) : ( (n)%(b)==0 ? n : (n)+(b)-(n)%(b) ) )
    // yes_roundUp(n,b) ( (b)==0 ? (n) : ( ((n + b - 1) / b) * b ) )

    // no_roundUp(n,b) ( (n)%(b)==0 ? n : (b)*( (n)/(b) )+(b) )
    // no_roundUp(n,b) ( (n)+(b) - (n)%(b) )

if (true) // couldn't make it work without (?:)
{{  // test::roundUp()
    unsigned m;
                { m = roundUp(17,8); } ++m;
    assertTrue( 24 == roundUp(17,8) );
                { m = roundUp(24,8); }
    assertTrue( 24 == roundUp(24,8) );

    assertTrue( 24 == roundUp(24,4) );
    assertTrue( 24 == roundUp(23,4) );
                { m = roundUp(23,4); }
    assertTrue( 24 == roundUp(21,4) );

    assertTrue( 20 == roundUp(20,4) );
    assertTrue( 20 == roundUp(19,4) );
    assertTrue( 20 == roundUp(18,4) );
    assertTrue( 20 == roundUp(17,4) );

    assertTrue( 17 == roundUp(17,0) );
    assertTrue( 20 == roundUp(20,0) );
}}
}

我想这应该对你有帮助。我用C语言编写了下面的程序。

# include <stdio.h>
int main()
{
  int i, j;
  printf("\nEnter Two Integers i and j...");
  scanf("%d %d", &i, &j);
  int Round_Off=i+j-i%j;
  printf("The Rounded Off Integer Is...%d\n", Round_Off);
  return 0;
}

没有条件:

int roundUp(int numToRound, int multiple) 
{
    assert(multiple);
    return ((numToRound + multiple - 1) / multiple) * multiple;
}

这就像对负数进行舍入一样


同样适用于负数的版本:

int roundUp(int numToRound, int multiple) 
{
    assert(multiple);
    int isPositive = (int)(numToRound >= 0);
    return ((numToRound + isPositive * (multiple - 1)) / multiple) * multiple;
}

测试


如果倍数是2的幂(快3.7倍)

int roundUp(int numToRound, int multiple) 
{
    assert(multiple && ((multiple & (multiple - 1)) == 0));
    return (numToRound + multiple - 1) & -multiple;
}

测试

想要一个简短而甜蜜的答案的人。这是我用的。不考虑消极因素。

n - (n % r)

这将返回前一个因子。

(n + r) - (n % r)

将返回下一个。希望这能帮助到一些人。:)

我认为这是可行的:

int roundUp(int numToRound, int multiple) {
    return multiple? !(numToRound%multiple)? numToRound : ((numToRound/multiple)+1)*multiple: numToRound;
}