在这个网站上已经有很多性能问题了,但是在我看来,几乎所有的问题都是非常具体的,而且相当狭窄。几乎所有人都重复了避免过早优化的建议。

我们假设:

代码已经正常工作了 所选择的算法对于问题的环境已经是最优的 对代码进行了测量,并隔离了有问题的例程 所有优化的尝试也将被衡量,以确保它们不会使事情变得更糟

我在这里寻找的是策略和技巧,在一个关键算法中,当没有其他事情可做,但无论如何都要挤出最后百分之几。

理想情况下,尽量让答案与语言无关,并在适用的情况下指出所建议的策略的任何缺点。

我将添加一个带有我自己最初建议的回复,并期待Stack Overflow社区能想到的任何其他东西。


当前回答

调整操作系统和框架。

这听起来可能有点夸张,但可以这样想:操作系统和框架被设计用来做很多事情。您的应用程序只做非常具体的事情。如果你能让操作系统完全满足你的应用程序的需求,并让你的应用程序理解框架(php,.net,java)是如何工作的,你就能从硬件上得到更好的东西。

例如,Facebook改变了Linux中的一些内核级别的东西,改变了memcached的工作方式(例如,他们写了一个memcached代理,使用udp而不是tcp)。

另一个例子是Window2008。Win2K8有一个版本,你可以安装运行X应用程序所需的基本操作系统(例如web应用程序,服务器应用程序)。这大大减少了操作系统在运行进程方面的开销,并为您提供了更好的性能。

当然,你应该在第一步就投入更多的硬件……

其他回答

由于许多性能问题都涉及数据库问题,因此在调优查询和存储过程时,我将介绍一些需要注意的具体问题。

避免在大多数数据库中使用游标。也要避免循环。大多数时候,数据访问应该基于设置,而不是逐条记录处理。这包括当您希望一次插入1,000,000条记录时,不要重用单个记录存储过程。

不要使用select *,只返回实际需要的字段。如果存在任何连接,则尤其如此,因为连接字段将重复,从而在服务器和网络上造成不必要的负载。

避免使用相关的子查询。使用连接(尽可能包括到派生表的连接)(我知道这对于Microsoft SQL Server是正确的,但是在使用不同的后端时测试建议)。

索引,索引,索引。如果适用于您的数据库,请更新这些统计数据。

使查询sargable。这意味着避免一些不可能使用索引的事情,例如在like子句的第一个字符中使用通配符,或在join中的函数中使用通配符,或作为where语句的左侧部分。

使用正确的数据类型。在日期字段上进行日期计算要比尝试将字符串数据类型转换为日期数据类型然后进行计算快得多。

永远不要在触发器中放入任何形式的循环!

大多数数据库都有一种方法来检查如何执行查询。在Microsoft SQL Server中,这被称为执行计划。先检查一下,看看问题出在哪里。

在确定需要优化的内容时,考虑查询运行的频率以及运行所需的时间。有时,对一个每天运行数百万次的查询稍作调整,可以获得比删除一个月只运行一次的long_running查询更多的性能。

使用某种分析器工具来找出发送到数据库和从数据库发送的内容。我记得过去有一次,我们不知道为什么页面加载这么慢,而存储过程却很快,并通过分析发现网页多次而不是一次地请求查询。

剖析器还将帮助您找到谁在阻止谁。一些单独运行时执行很快的查询可能会因为来自其他查询的锁而变得非常慢。

当你不能再提高表现时,看看你是否可以提高感知的表现。

您可能无法使您的fooCalc算法更快,但通常有一些方法可以使您的应用程序对用户的响应更快。

举几个例子:

预测用户将要做什么 请求并开始着手这项工作 在那之前 将结果显示为 它们是进来的,而不是同时出现的 在最后 精确的进度计

这些不会让你的程序更快,但可能会让你的用户对你的速度更满意。

如果更好的硬件是一个选择,那么一定要去做。否则

Check you are using the best compiler and linker options. If hotspot routine in different library to frequent caller, consider moving or cloning it to the callers module. Eliminates some of the call overhead and may improve cache hits (cf how AIX links strcpy() statically into separately linked shared objects). This could of course decrease cache hits also, which is why one measure. See if there is any possibility of using a specialized version of the hotspot routine. Downside is more than one version to maintain. Look at the assembler. If you think it could be better, consider why the compiler did not figure this out, and how you could help the compiler. Consider: are you really using the best algorithm? Is it the best algorithm for your input size?

缓存!要使几乎任何事情都变得更快,一个便宜的方法(在程序员的努力中)是在程序的任何数据移动区域添加缓存抽象层。无论是I/O还是只是传递/创建对象或结构。通常,向工厂类和读取器/写入器添加缓存是很容易的。

有时缓存不会给你带来太多好处,但这是一种简单的方法,只需添加缓存,然后在没有帮助的地方禁用它。我经常发现这样做可以获得巨大的性能,而无需对代码进行微观分析。

分而治之

如果正在处理的数据集太大,则对其中的大块进行循环。如果代码编写正确,实现应该很容易。如果您有一个单片程序,现在您就更清楚了。