在这个网站上已经有很多性能问题了,但是在我看来,几乎所有的问题都是非常具体的,而且相当狭窄。几乎所有人都重复了避免过早优化的建议。

我们假设:

代码已经正常工作了 所选择的算法对于问题的环境已经是最优的 对代码进行了测量,并隔离了有问题的例程 所有优化的尝试也将被衡量,以确保它们不会使事情变得更糟

我在这里寻找的是策略和技巧,在一个关键算法中,当没有其他事情可做,但无论如何都要挤出最后百分之几。

理想情况下,尽量让答案与语言无关,并在适用的情况下指出所建议的策略的任何缺点。

我将添加一个带有我自己最初建议的回复,并期待Stack Overflow社区能想到的任何其他东西。


当前回答

不好说。这取决于代码的样子。如果我们可以假设代码已经存在,那么我们可以简单地查看它并从中找出如何优化它。

更好的缓存位置,循环展开,尽量消除长依赖链,以获得更好的指令级并行性。尽可能选择有条件的移动而不是分支。尽可能利用SIMD指令。

理解你的代码在做什么,理解它运行在什么硬件上。然后,决定需要做什么来提高代码的性能就变得相当简单了。这是我能想到的唯一一个真正具有普遍性的建议。

好吧,还有“在SO上显示代码,并为特定的代码段寻求优化建议”。

其他回答

由于许多性能问题都涉及数据库问题,因此在调优查询和存储过程时,我将介绍一些需要注意的具体问题。

避免在大多数数据库中使用游标。也要避免循环。大多数时候,数据访问应该基于设置,而不是逐条记录处理。这包括当您希望一次插入1,000,000条记录时,不要重用单个记录存储过程。

不要使用select *,只返回实际需要的字段。如果存在任何连接,则尤其如此,因为连接字段将重复,从而在服务器和网络上造成不必要的负载。

避免使用相关的子查询。使用连接(尽可能包括到派生表的连接)(我知道这对于Microsoft SQL Server是正确的,但是在使用不同的后端时测试建议)。

索引,索引,索引。如果适用于您的数据库,请更新这些统计数据。

使查询sargable。这意味着避免一些不可能使用索引的事情,例如在like子句的第一个字符中使用通配符,或在join中的函数中使用通配符,或作为where语句的左侧部分。

使用正确的数据类型。在日期字段上进行日期计算要比尝试将字符串数据类型转换为日期数据类型然后进行计算快得多。

永远不要在触发器中放入任何形式的循环!

大多数数据库都有一种方法来检查如何执行查询。在Microsoft SQL Server中,这被称为执行计划。先检查一下,看看问题出在哪里。

在确定需要优化的内容时,考虑查询运行的频率以及运行所需的时间。有时,对一个每天运行数百万次的查询稍作调整,可以获得比删除一个月只运行一次的long_running查询更多的性能。

使用某种分析器工具来找出发送到数据库和从数据库发送的内容。我记得过去有一次,我们不知道为什么页面加载这么慢,而存储过程却很快,并通过分析发现网页多次而不是一次地请求查询。

剖析器还将帮助您找到谁在阻止谁。一些单独运行时执行很快的查询可能会因为来自其他查询的锁而变得非常慢。

不好说。这取决于代码的样子。如果我们可以假设代码已经存在,那么我们可以简单地查看它并从中找出如何优化它。

更好的缓存位置,循环展开,尽量消除长依赖链,以获得更好的指令级并行性。尽可能选择有条件的移动而不是分支。尽可能利用SIMD指令。

理解你的代码在做什么,理解它运行在什么硬件上。然后,决定需要做什么来提高代码的性能就变得相当简单了。这是我能想到的唯一一个真正具有普遍性的建议。

好吧,还有“在SO上显示代码,并为特定的代码段寻求优化建议”。

你知道吗,一根CAT6电缆能够比缺省的Cat5e UTP电缆更好地屏蔽外部干扰10倍?

对于任何非离线项目,尽管拥有最好的软件和硬件,但如果你的throughoutput很弱,那么这条细线就会挤压数据并给你带来延迟,尽管只有几毫秒……

此外,CAT6电缆的最大吞吐量更高,因为您实际上更有可能收到铜芯电缆,而不是CCA,铜芯包覆铝,这通常出现在所有标准CAT5e电缆中。

如果您面临丢包,丢包,那么提高24/7操作的吞吐量可靠性可以使您所寻找的不同。

对于那些追求家庭/办公室连接可靠性的人来说(并且愿意对今年的快餐店说不,在年底你可以在那里),以知名品牌的CAT7电缆的形式为自己提供LAN连接的顶峰。

如果更好的硬件是一个选择,那么一定要去做。否则

Check you are using the best compiler and linker options. If hotspot routine in different library to frequent caller, consider moving or cloning it to the callers module. Eliminates some of the call overhead and may improve cache hits (cf how AIX links strcpy() statically into separately linked shared objects). This could of course decrease cache hits also, which is why one measure. See if there is any possibility of using a specialized version of the hotspot routine. Downside is more than one version to maintain. Look at the assembler. If you think it could be better, consider why the compiler did not figure this out, and how you could help the compiler. Consider: are you really using the best algorithm? Is it the best algorithm for your input size?

以下是我使用的一些快速而粗糙的优化技术。我认为这是“第一关”优化。

了解时间都花在了什么地方。是文件IO吗?是CPU时间吗?是因为网络吗?是数据库吗?如果IO不是瓶颈,优化IO是没有用的。

了解您的环境了解在哪里进行优化通常取决于开发环境。例如,在VB6中,通过引用传递比通过值传递慢,但是在C和c++中,通过引用传递要快得多。在C语言中,如果返回代码表明失败,尝试一些东西并做一些不同的事情是合理的,而在Dot Net中,捕获异常比尝试前检查有效条件要慢得多。

在频繁查询的数据库字段上构建索引。你几乎总是可以用空间来换取速度。

在要优化的循环内部,我避免了必须进行任何查找。找到循环外的偏移量和/或索引,并重用循环内的数据。

最小化IO尝试以一种减少必须读或写的次数的方式进行设计,特别是在网络连接上

减少抽象代码必须通过的抽象层越多,它就越慢。在关键循环内部,减少抽象(例如,揭示避免额外代码的低级方法)

对于带有用户界面的项目,生成一个新线程来执行较慢的任务使应用程序感觉反应更快,尽管不是。

你通常可以用空间来换取速度。如果有计算或其他密集的操作,看看是否可以在进入关键循环之前预先计算一些信息。