我有一个熊猫数据帧,df:

   c1   c2
0  10  100
1  11  110
2  12  120

如何迭代此数据帧的行?对于每一行,我希望能够通过列的名称访问其元素(单元格中的值)。例如:

for row in df.rows:
    print(row['c1'], row['c2'])

我发现了一个类似的问题,建议使用以下任一项:

for date, row in df.T.iteritems():
for row in df.iterrows():

但我不知道row对象是什么,以及如何使用它。


当前回答

可以按如下方式使用df.iloc函数:

for i in range(0, len(df)):
    print(df.iloc[i]['c1'], df.iloc[i]['c2'])

其他回答

您应该使用df.iterrows()。虽然逐行迭代不是特别有效,因为必须创建Series对象。

 for ind in df.index:
     print df['c1'][ind], df['c2'][ind]

有一种方法可以在返回DataFrame而不是Series时迭代抛出行。我没有看到任何人提到可以将索引作为列表传递给要作为DataFrame返回的行:

for i in range(len(df)):
    row = df.iloc[[i]]

注意双括号的用法。这将返回具有单行的DataFrame。

更新:cs95更新了他的答案,包括简单的numpy矢量化。你可以简单地参考他的答案。


cs95表明,Pandas矢量化在使用数据帧计算数据方面远远优于其他Pandas方法。

我想补充一点,如果您首先将数据帧转换为NumPy数组,然后使用矢量化,它甚至比Pandas数据帧矢量化更快(这包括将其转换回数据帧序列的时间)。

如果您将以下函数添加到cs95的基准代码中,这将变得非常明显:

def np_vectorization(df):
    np_arr = df.to_numpy()
    return pd.Series(np_arr[:,0] + np_arr[:,1], index=df.index)

def just_np_vectorization(df):
    np_arr = df.to_numpy()
    return np_arr[:,0] + np_arr[:,1]

我正在寻找如何迭代行和列,并在这里结束:

for i, row in df.iterrows():
    for j, column in row.iteritems():
        print(column)