我想计算两个列表之间的余弦相似度,比如说,列表1是dataSetI,列表2是dataSetII。

假设dataSetI是[3,45,7,2],dataSetII是[2,54,13,15]。列表的长度总是相等的。我想将余弦相似度报告为0到1之间的数。

dataSetI = [3, 45, 7, 2]
dataSetII = [2, 54, 13, 15]

def cosine_similarity(list1, list2):
  # How to?
  pass

print(cosine_similarity(dataSetI, dataSetII))

当前回答

你可以使用这个简单的函数来计算余弦相似度:

def cosine_similarity(a, b):
  return sum([i*j for i,j in zip(a, b)])/(math.sqrt(sum([i*i for i in a]))* math.sqrt(sum([i*i for i in b])))

其他回答

你可以使用sklearn.metrics.pairwise docs中的cosine_similarity函数

In [23]: from sklearn.metrics.pairwise import cosine_similarity

In [24]: cosine_similarity([[1, 0, -1]], [[-1,-1, 0]])
Out[24]: array([[-0.5]])

你可以使用这个简单的函数来计算余弦相似度:

def cosine_similarity(a, b):
  return sum([i*j for i,j in zip(a, b)])/(math.sqrt(sum([i*i for i in a]))* math.sqrt(sum([i*i for i in b])))

如果你碰巧已经在使用PyTorch,你应该使用他们的cosessimilarity实现。

假设有两个n维的numpy。ndarray, v1和v2,即它们的形状都是(n,)。以下是如何获得它们的余弦相似度:

import torch
import torch.nn as nn

cos = nn.CosineSimilarity()
cos(torch.tensor([v1]), torch.tensor([v2])).item()

或者假设有两个numpy。ndarray w1和w2,它们的形状都是(m, n)。下面给你一个余弦相似度列表,每个都是w1中的一行和w2中的相应行之间的余弦相似度:

cos(torch.tensor(w1), torch.tensor(w2)).tolist()

另一个版本,如果你有一个场景,你有一个向量列表和一个查询向量,你想要计算查询向量与列表中所有向量的余弦相似度,你可以用下面的方式一次性完成:

>>> import numpy as np

>>> A      # list of vectors, shape -> m x n
array([[ 3, 45,  7,  2],
       [ 1, 23,  3,  4]])

>>> B      # query vector, shape -> 1 x n
array([ 2, 54, 13, 15])

>>> similarity_scores = A.dot(B)/ (np.linalg.norm(A, axis=1) * np.linalg.norm(B))

>>> similarity_scores
array([0.97228425, 0.99026919])

我想性能在这里不太重要,但我忍不住。zip()函数完全复制了两个向量(实际上更像是矩阵转置),只是为了以“python”顺序获取数据。计算具体实现的时间会很有趣:

import math
def cosine_similarity(v1,v2):
    "compute cosine similarity of v1 to v2: (v1 dot v2)/{||v1||*||v2||)"
    sumxx, sumxy, sumyy = 0, 0, 0
    for i in range(len(v1)):
        x = v1[i]; y = v2[i]
        sumxx += x*x
        sumyy += y*y
        sumxy += x*y
    return sumxy/math.sqrt(sumxx*sumyy)

v1,v2 = [3, 45, 7, 2], [2, 54, 13, 15]
print(v1, v2, cosine_similarity(v1,v2))

Output: [3, 45, 7, 2] [2, 54, 13, 15] 0.972284251712

这将经历一次提取一个元素的类似c的噪音,但不进行批量数组复制,并在单个for循环中完成所有重要的工作,并使用单个平方根。

ETA:更新打印调用为函数。(最初的版本是Python 2.7,不是3.3。当前在Python 2.7下运行,使用from __future__ import print_function语句。)无论哪种方式,输出都是相同的。

3.0GHz Core 2 Duo上的CPYthon 2.7.3

>>> timeit.timeit("cosine_similarity(v1,v2)",setup="from __main__ import cosine_similarity, v1, v2")
2.4261788514654654
>>> timeit.timeit("cosine_measure(v1,v2)",setup="from __main__ import cosine_measure, v1, v2")
8.794677709375264

所以,在这种情况下,非python的方式要快3.6倍。