在Tensorflow中训练一个模型后:

如何拯救训练过的模型? 您以后如何恢复这个保存的模型?


当前回答

在@Vishnuvardhan Janapati的回答之后,这里是另一种在TensorFlow 2.0.0下保存和重载自定义层/度量/损失模型的方法

import tensorflow as tf
from tensorflow.keras.layers import Layer
from tensorflow.keras.utils.generic_utils import get_custom_objects

# custom loss (for example)  
def custom_loss(y_true,y_pred):
  return tf.reduce_mean(y_true - y_pred)
get_custom_objects().update({'custom_loss': custom_loss}) 

# custom loss (for example) 
class CustomLayer(Layer):
  def __init__(self, ...):
      ...
  # define custom layer and all necessary custom operations inside custom layer

get_custom_objects().update({'CustomLayer': CustomLayer})  

通过这种方式,一旦您执行了这些代码,并使用tf.keras.models保存了您的模型。Save_model或model。save或ModelCheckpoint回调,您可以重新加载您的模型,而不需要精确的自定义对象,就像这样简单

new_model = tf.keras.models.load_model("./model.h5"})

其他回答

使用tf.train.Saver保存模型。记住,如果想要减小模型大小,就需要指定var_list。val_list可以是:

特遣部队。trainable_variables或 tf.global_variables。

在新版本的tensorflow 2.0中,保存/加载模型的过程要容易得多。因为Keras API的实现,一个TensorFlow的高级API。

保存一个模型: 请查阅相关文档以作参考: https://www.tensorflow.org/versions/r2.0/api_docs/python/tf/keras/models/save_model

tf.keras.models.save_model(model_name, filepath, save_format)

加载一个模型:

https://www.tensorflow.org/versions/r2.0/api_docs/python/tf/keras/models/load_model

model = tf.keras.models.load_model(filepath)

你可以使用Tensorflow中的saver对象来保存你训练过的模型。该对象提供保存和恢复模型的方法。

在TensorFlow中保存一个训练好的模型:

tf.train.Saver.save(sess, save_path, global_step=None, latest_filename=None,
                    meta_graph_suffix='meta', write_meta_graph=True,
                    write_state=True, strip_default_attrs=False,
                    save_debug_info=False)

在TensorFlow中恢复已保存的模型:

tf.train.Saver.restore(sess, save_path, latest_filename=None,
                       meta_graph_suffix='meta', clear_devices=False,
                       import_scope=None)

如第6255期所述:

use '**./**model_name.ckpt'
saver.restore(sess,'./my_model_final.ckpt')

而不是

saver.restore('my_model_final.ckpt')

如果您使用tf.train.MonitoredTrainingSession作为默认会话,则不需要添加额外的代码来执行保存/恢复操作。只需将检查点目录名称传递给MonitoredTrainingSession的构造函数,它将使用会话挂钩来处理这些。