在Tensorflow中训练一个模型后:

如何拯救训练过的模型? 您以后如何恢复这个保存的模型?


当前回答

我的环境:Python 3.6, Tensorflow 1.3.0

虽然有很多解决方案,但大多数都是基于tf.train.Saver。当我们加载由Saver保存的.ckpt文件时,我们必须要么重新定义张量流网络,要么使用一些奇怪且难以记住的名称,例如:“placehold_0:0”,“密集/亚当/重量:0”。这里我推荐使用tf。saved_model,下面给出的一个最简单的例子,你可以从为TensorFlow模型服务中学到更多:

保存模型:

import tensorflow as tf

# define the tensorflow network and do some trains
x = tf.placeholder("float", name="x")
w = tf.Variable(2.0, name="w")
b = tf.Variable(0.0, name="bias")

h = tf.multiply(x, w)
y = tf.add(h, b, name="y")
sess = tf.Session()
sess.run(tf.global_variables_initializer())

# save the model
export_path =  './savedmodel'
builder = tf.saved_model.builder.SavedModelBuilder(export_path)

tensor_info_x = tf.saved_model.utils.build_tensor_info(x)
tensor_info_y = tf.saved_model.utils.build_tensor_info(y)

prediction_signature = (
  tf.saved_model.signature_def_utils.build_signature_def(
      inputs={'x_input': tensor_info_x},
      outputs={'y_output': tensor_info_y},
      method_name=tf.saved_model.signature_constants.PREDICT_METHOD_NAME))

builder.add_meta_graph_and_variables(
  sess, [tf.saved_model.tag_constants.SERVING],
  signature_def_map={
      tf.saved_model.signature_constants.DEFAULT_SERVING_SIGNATURE_DEF_KEY:
          prediction_signature 
  },
  )
builder.save()

加载模型:

import tensorflow as tf
sess=tf.Session() 
signature_key = tf.saved_model.signature_constants.DEFAULT_SERVING_SIGNATURE_DEF_KEY
input_key = 'x_input'
output_key = 'y_output'

export_path =  './savedmodel'
meta_graph_def = tf.saved_model.loader.load(
           sess,
          [tf.saved_model.tag_constants.SERVING],
          export_path)
signature = meta_graph_def.signature_def

x_tensor_name = signature[signature_key].inputs[input_key].name
y_tensor_name = signature[signature_key].outputs[output_key].name

x = sess.graph.get_tensor_by_name(x_tensor_name)
y = sess.graph.get_tensor_by_name(y_tensor_name)

y_out = sess.run(y, {x: 3.0})

其他回答

对于TensorFlow版本< 0.11.0RC1:

保存的检查点包含模型中的变量值,而不是模型/图本身,这意味着当您恢复检查点时,图应该是相同的。

这里有一个线性回归的例子,其中有一个训练循环,保存变量检查点,还有一个评估部分,将恢复之前运行中保存的变量并计算预测。当然,如果你愿意,你也可以恢复变量并继续训练。

x = tf.placeholder(tf.float32)
y = tf.placeholder(tf.float32)

w = tf.Variable(tf.zeros([1, 1], dtype=tf.float32))
b = tf.Variable(tf.ones([1, 1], dtype=tf.float32))
y_hat = tf.add(b, tf.matmul(x, w))

...more setup for optimization and what not...

saver = tf.train.Saver()  # defaults to saving all variables - in this case w and b

with tf.Session() as sess:
    sess.run(tf.initialize_all_variables())
    if FLAGS.train:
        for i in xrange(FLAGS.training_steps):
            ...training loop...
            if (i + 1) % FLAGS.checkpoint_steps == 0:
                saver.save(sess, FLAGS.checkpoint_dir + 'model.ckpt',
                           global_step=i+1)
    else:
        # Here's where you're restoring the variables w and b.
        # Note that the graph is exactly as it was when the variables were
        # saved in a prior training run.
        ckpt = tf.train.get_checkpoint_state(FLAGS.checkpoint_dir)
        if ckpt and ckpt.model_checkpoint_path:
            saver.restore(sess, ckpt.model_checkpoint_path)
        else:
            ...no checkpoint found...

        # Now you can run the model to get predictions
        batch_x = ...load some data...
        predictions = sess.run(y_hat, feed_dict={x: batch_x})

下面是变量文档,涵盖了保存和恢复。这是保存程序的文档。

如第6255期所述:

use '**./**model_name.ckpt'
saver.restore(sess,'./my_model_final.ckpt')

而不是

saver.restore('my_model_final.ckpt')

模型有两个部分,模型定义,由Supervisor保存为图。模型目录中的PBTXT和张量的数值,保存到检查点文件,如model.ckpt-1003418。

可以使用tf恢复模型定义。import_graph_def,并且使用Saver恢复权重。

然而,Saver使用特殊的集合保存附加到模型Graph的变量列表,并且这个集合没有使用import_graph_def初始化,所以您目前不能同时使用这两者(这在我们的路线图中进行修复)。现在,您必须使用Ryan Sepassi的方法——手动构造具有相同节点名称的图,并使用Saver将权重加载到其中。

(或者,您可以通过使用import_graph_def,手动创建变量和使用tf.add_to_collection(tf.GraphKeys. collection)来破解它。变量,变量)为每个变量,然后使用Saver)

最简单的方法是使用keras api,在线保存模型和一行加载模型

from keras.models import load_model

my_model.save('my_model.h5')  # creates a HDF5 file 'my_model.h5'

del my_model  # deletes the existing model


my_model = load_model('my_model.h5') # returns a compiled model identical to the previous one

使用tf.train.Saver保存模型。记住,如果想要减小模型大小,就需要指定var_list。val_list可以是:

特遣部队。trainable_variables或 tf.global_variables。