在Tensorflow中训练一个模型后:
如何拯救训练过的模型? 您以后如何恢复这个保存的模型?
在Tensorflow中训练一个模型后:
如何拯救训练过的模型? 您以后如何恢复这个保存的模型?
当前回答
你可以使用Tensorflow中的saver对象来保存你训练过的模型。该对象提供保存和恢复模型的方法。
在TensorFlow中保存一个训练好的模型:
tf.train.Saver.save(sess, save_path, global_step=None, latest_filename=None,
meta_graph_suffix='meta', write_meta_graph=True,
write_state=True, strip_default_attrs=False,
save_debug_info=False)
在TensorFlow中恢复已保存的模型:
tf.train.Saver.restore(sess, save_path, latest_filename=None,
meta_graph_suffix='meta', clear_devices=False,
import_scope=None)
其他回答
最简单的方法是使用keras api,在线保存模型和一行加载模型
from keras.models import load_model
my_model.save('my_model.h5') # creates a HDF5 file 'my_model.h5'
del my_model # deletes the existing model
my_model = load_model('my_model.h5') # returns a compiled model identical to the previous one
根据新的Tensorflow版本,tf.train.Checkpoint是保存和恢复模型的最佳方式:
Checkpoint.save and Checkpoint.restore write and read object-based checkpoints, in contrast to tf.train.Saver which writes and reads variable.name based checkpoints. Object-based checkpointing saves a graph of dependencies between Python objects (Layers, Optimizers, Variables, etc.) with named edges, and this graph is used to match variables when restoring a checkpoint. It can be more robust to changes in the Python program, and helps to support restore-on-create for variables when executing eagerly. Prefer tf.train.Checkpoint over tf.train.Saver for new code.
这里有一个例子:
import tensorflow as tf
import os
tf.enable_eager_execution()
checkpoint_directory = "/tmp/training_checkpoints"
checkpoint_prefix = os.path.join(checkpoint_directory, "ckpt")
checkpoint = tf.train.Checkpoint(optimizer=optimizer, model=model)
status = checkpoint.restore(tf.train.latest_checkpoint(checkpoint_directory))
for _ in range(num_training_steps):
optimizer.minimize( ... ) # Variables will be restored on creation.
status.assert_consumed() # Optional sanity checks.
checkpoint.save(file_prefix=checkpoint_prefix)
这里有更多信息和示例。
您可以保存网络中的变量使用
saver = tf.train.Saver()
saver.save(sess, 'path of save/fileName.ckpt')
要恢复网络以供以后或在另一个脚本中重用,请使用:
saver = tf.train.Saver()
saver.restore(sess, tf.train.latest_checkpoint('path of save/')
sess.run(....)
重要的几点:
第一次运行和以后运行之间的Sess必须相同(一致的结构)。 储蓄者。还原需要保存文件的文件夹路径,而不是单个文件路径。
我在版本:
tensorflow (1.13.1)
tensorflow-gpu (1.13.1)
简单的方法是
拯救策略:
model.save("model.h5")
恢复:
model = tf.keras.models.load_model("model.h5")
Tensorflow 2.6:它现在变得更简单了,你可以用两种格式保存模型
Saved_model (tf服务兼容) H5或HDF5
以两种格式保存模型:
from tensorflow.keras import Model
inputs = tf.keras.Input(shape=(224,224,3))
y = tf.keras.layers.Conv2D(24, 3, activation='relu', input_shape=input_shape[1:])(inputs)
outputs = tf.keras.layers.Dense(5, activation=tf.nn.softmax)(y)
model = tf.keras.Model(inputs=inputs, outputs=outputs)
model.save("saved_model/my_model") #To Save in Saved_model format
model.save("my_model.h5") #To save model in H5 or HDF5 format
以两种格式加载模型
import tensorflow as tf
h5_model = tf.keras.models.load_model("my_model.h5") # loading model in h5 format
h5_model.summary()
saved_m = tf.keras.models.load_model("saved_model/my_model") #loading model in saved_model format
saved_m.summary()