在Tensorflow中训练一个模型后:

如何拯救训练过的模型? 您以后如何恢复这个保存的模型?


当前回答

你可以使用Tensorflow中的saver对象来保存你训练过的模型。该对象提供保存和恢复模型的方法。

在TensorFlow中保存一个训练好的模型:

tf.train.Saver.save(sess, save_path, global_step=None, latest_filename=None,
                    meta_graph_suffix='meta', write_meta_graph=True,
                    write_state=True, strip_default_attrs=False,
                    save_debug_info=False)

在TensorFlow中恢复已保存的模型:

tf.train.Saver.restore(sess, save_path, latest_filename=None,
                       meta_graph_suffix='meta', clear_devices=False,
                       import_scope=None)

其他回答

你也可以在TensorFlow/skflow中查看例子,它提供了保存和恢复方法,可以帮助你轻松地管理模型。它具有一些参数,您还可以控制备份模型的频率。

我在版本:

tensorflow (1.13.1)
tensorflow-gpu (1.13.1)

简单的方法是

拯救策略:

model.save("model.h5")

恢复:

model = tf.keras.models.load_model("model.h5")

如果您使用tf.train.MonitoredTrainingSession作为默认会话,则不需要添加额外的代码来执行保存/恢复操作。只需将检查点目录名称传递给MonitoredTrainingSession的构造函数,它将使用会话挂钩来处理这些。

我的环境:Python 3.6, Tensorflow 1.3.0

虽然有很多解决方案,但大多数都是基于tf.train.Saver。当我们加载由Saver保存的.ckpt文件时,我们必须要么重新定义张量流网络,要么使用一些奇怪且难以记住的名称,例如:“placehold_0:0”,“密集/亚当/重量:0”。这里我推荐使用tf。saved_model,下面给出的一个最简单的例子,你可以从为TensorFlow模型服务中学到更多:

保存模型:

import tensorflow as tf

# define the tensorflow network and do some trains
x = tf.placeholder("float", name="x")
w = tf.Variable(2.0, name="w")
b = tf.Variable(0.0, name="bias")

h = tf.multiply(x, w)
y = tf.add(h, b, name="y")
sess = tf.Session()
sess.run(tf.global_variables_initializer())

# save the model
export_path =  './savedmodel'
builder = tf.saved_model.builder.SavedModelBuilder(export_path)

tensor_info_x = tf.saved_model.utils.build_tensor_info(x)
tensor_info_y = tf.saved_model.utils.build_tensor_info(y)

prediction_signature = (
  tf.saved_model.signature_def_utils.build_signature_def(
      inputs={'x_input': tensor_info_x},
      outputs={'y_output': tensor_info_y},
      method_name=tf.saved_model.signature_constants.PREDICT_METHOD_NAME))

builder.add_meta_graph_and_variables(
  sess, [tf.saved_model.tag_constants.SERVING],
  signature_def_map={
      tf.saved_model.signature_constants.DEFAULT_SERVING_SIGNATURE_DEF_KEY:
          prediction_signature 
  },
  )
builder.save()

加载模型:

import tensorflow as tf
sess=tf.Session() 
signature_key = tf.saved_model.signature_constants.DEFAULT_SERVING_SIGNATURE_DEF_KEY
input_key = 'x_input'
output_key = 'y_output'

export_path =  './savedmodel'
meta_graph_def = tf.saved_model.loader.load(
           sess,
          [tf.saved_model.tag_constants.SERVING],
          export_path)
signature = meta_graph_def.signature_def

x_tensor_name = signature[signature_key].inputs[input_key].name
y_tensor_name = signature[signature_key].outputs[output_key].name

x = sess.graph.get_tensor_by_name(x_tensor_name)
y = sess.graph.get_tensor_by_name(y_tensor_name)

y_out = sess.run(y, {x: 3.0})

最简单的方法是使用keras api,在线保存模型和一行加载模型

from keras.models import load_model

my_model.save('my_model.h5')  # creates a HDF5 file 'my_model.h5'

del my_model  # deletes the existing model


my_model = load_model('my_model.h5') # returns a compiled model identical to the previous one