我已经创建了一个熊猫数据框架

df = DataFrame(index=['A','B','C'], columns=['x','y'])

得到了这个

    x    y
A  NaN  NaN
B  NaN  NaN
C  NaN  NaN

现在,我想给特定的单元格赋值,例如给C行和x列赋值。 我希望得到这样的结果:

    x    y
A  NaN  NaN
B  NaN  NaN
C  10  NaN

下面的代码:

df.xs('C')['x'] = 10

但是df的内容没有改变。数据帧仍然只包含nan。

有什么建议吗?


当前回答

如果你不想改变整行的值,而只是改变一些列的值:

x = pd.DataFrame({'A': [1, 2, 3], 'B': [4, 5, 6]})
x.iloc[1] = dict(A=10, B=-10)

其他回答

苏,你的问题是将['x',C]的NaN转换为值10

答案是…

df['x'].loc['C':]=10
df

另一种代码是

df.loc['C', 'x']=10
df

你也可以使用.loc进行条件查找,如下所示:

df.loc[df[<some_column_name>] == <condition>, [<another_column_name>]] = <value_to_add>

其中<some_column_name是您想要检查<条件>变量的列,<another_column_name>是您想要添加的列(可以是新列,也可以是已经存在的列)。<value_to_add>是您想要添加到该列/行中的值。

这个示例并不能精确地解决当前的问题,但是对于想要根据条件添加特定值的人来说,它可能是有用的。

建议的设置方法(根据维护人员)为:

df.ix['x','C']=10

使用“链式索引”(df['x']['C'])可能会导致问题。

See:

https://stackoverflow.com/a/21287235/1579844 http://pandas.pydata.org/pandas-docs/dev/indexing.html#indexing-view-versus-copy https://github.com/pydata/pandas/pull/6031

更新:.set_value方法将被弃用。它们是很好的替代品,不幸的是熊猫提供的文件很少


最快的方法是使用set_value。该方法比.ix方法快100倍。例如:

df。set_value('C', 'x', 10)

尝试使用df。Loc [row_index,col_indexer] = value