我已经创建了一个熊猫数据框架

df = DataFrame(index=['A','B','C'], columns=['x','y'])

得到了这个

    x    y
A  NaN  NaN
B  NaN  NaN
C  NaN  NaN

现在,我想给特定的单元格赋值,例如给C行和x列赋值。 我希望得到这样的结果:

    x    y
A  NaN  NaN
B  NaN  NaN
C  10  NaN

下面的代码:

df.xs('C')['x'] = 10

但是df的内容没有改变。数据帧仍然只包含nan。

有什么建议吗?


当前回答

我也在搜索这个主题,我把一种方法放在一起,通过一个DataFrame迭代,并从第二个DataFrame更新查找值。这是我的代码。

src_df = pd.read_sql_query(src_sql,src_connection)
for index1, row1 in src_df.iterrows():
    for index, row in vertical_df.iterrows():
        src_df.set_value(index=index1,col=u'etl_load_key',value=etl_load_key)
        if (row1[u'src_id'] == row['SRC_ID']) is True:
            src_df.set_value(index=index1,col=u'vertical',value=row['VERTICAL'])

其他回答

df.loc [' c ', ' x '] = 10 这将改变第c行和 xth列。

你可以使用。iloc。

df.iloc[[2], [0]] = 10

你也可以使用.loc进行条件查找,如下所示:

df.loc[df[<some_column_name>] == <condition>, [<another_column_name>]] = <value_to_add>

其中<some_column_name是您想要检查<条件>变量的列,<another_column_name>是您想要添加的列(可以是新列,也可以是已经存在的列)。<value_to_add>是您想要添加到该列/行中的值。

这个示例并不能精确地解决当前的问题,但是对于想要根据条件添加特定值的人来说,它可能是有用的。

在我的例子中,我只是在选定单元格中更改它

    for index, row in result.iterrows():
        if np.isnan(row['weight']):
            result.at[index, 'weight'] = 0.0

'result'是一个带列'weight'的数据字段

这是唯一对我有效的方法!

df.loc['C', 'x'] = 10

在这里了解有关.loc的更多信息。