这个问题来自于对过去50年左右计算领域各种进展的评论。
其他一些与会者请我把这个问题作为一个问题向整个论坛提出。
这里的基本思想不是抨击事物的现状,而是试图理解提出基本新思想和原则的过程。
我认为我们在大多数计算领域都需要真正的新想法,我想知道最近已经完成的任何重要而有力的想法。如果我们真的找不到他们,那么我们应该问“为什么?”和“我们应该做什么?”
这个问题来自于对过去50年左右计算领域各种进展的评论。
其他一些与会者请我把这个问题作为一个问题向整个论坛提出。
这里的基本思想不是抨击事物的现状,而是试图理解提出基本新思想和原则的过程。
我认为我们在大多数计算领域都需要真正的新想法,我想知道最近已经完成的任何重要而有力的想法。如果我们真的找不到他们,那么我们应该问“为什么?”和“我们应该做什么?”
当前回答
在社区支持下,翻译软件可以进行手动更正和建议,随后由人工智能机器人形成模式,最终区分并正确预测不同翻译和上下文中的歧义。
虽然谷歌Translate可能不是野兽,但它是一个系统的母亲,或者可能是等待开发的祖母。
如果你仔细想想,文本语言实际上是大脑的输入,眼睛看到文本并将图像发送到大脑,然后大脑将其转化为理解。
虽然它真正的交流(尤其是人与人之间的交流)是一个高级的话题,但基本的是输入(带上下文)->翻译->理解。
为什么我们仍然没有真正的好办法给远方的同事或不会说我们语言的伙伴发送电子邮件?这显然是第一阶段。
一旦完成,我们就可以进行实时电话翻译之类的工作了。
相反,月复一月,我们最大的智力资产被用于其他更重要的项目,比如太空研究、流星探测,或者试图证明《圣经》是错的(打哈欠)。
我们把更多的时间花在基本的实际交流上怎么样?
其他回答
StackOverFlow.com
我认为自20世纪80年代以来发明的最好的想法将是我们不知道的。要么是因为它们很小,无处不在,以至于不引人注意,要么是因为它们的受欢迎程度还没有真正起飞。
前者的一个例子是单击并拖动以选择文本的一部分。我相信这是1984年首次出现在麦金塔电脑上。在此之前,您有单独的按钮用于选择选择的开始和结束。相当繁重。
后者的一个例子是(可能是)可视化编程语言。我不是说像hypercard,我是说像Max/MSP, Prograph, Quartz Composer, yahoo pipes等。目前它们确实是小众的,但我认为,除了思想分享之外,没有什么能阻止它们像标准编程语言一样具有表现力和强大的功能。
可视化编程语言有效地加强了引用透明性的函数式编程范式。这对于代码来说是一个非常有用的属性。他们执行这一点的方式也不是人为的——这只是由于他们使用的比喻。
VPL让那些本来不会编程的人也能编程,比如有语言障碍的人,比如阅读困难的人,甚至只是需要简单节省时间的门外汉。专业程序员可能会对此嗤之以鼻,但就我个人而言,我认为如果编程成为一种真正无处不在的技能,就像识字一样,那就太好了。
就目前来看,VPL只是一个小众的兴趣,还没有真正成为主流。
我们应该做些什么不同的事情
all computer science majors should be required to double major- coupling the CS major with one of the humanities. Painting, literature, design, psychology, history, english, whatever. A lot of the problem is that the industry is populated with people that have a really narrow and unimaginative understanding of the world, and therefore can't begin to imagine a computer working any significantly differently than it already does. (if it helps, you can imagine that I'm talking about someone other than you, the person reading this.) Mathematics is great, but in the end it's just a tool for achieving. we need experts who understand the nature of creativity, who also understand technology.
But even if we have them, there needs to be an environment where there's a possibility that doing something new would be worth the risk. It's 100 times more likely that anything truly new gets rejected out of hand, rather viciously. (the newton is an example of this). so we need a much higher tolerance for failure. We should not be afraid to try an idea which has failed in the past. We should not fully reject our own failures- and we should learn to recognize when we have failed. We should not see failure as a bad thing, and so we shouldn't lie to ourselves or to others about it. We should just get used to it, because it is just about the only constant in this ever changing industry. Post mortems are useful in this regard.
One of the more interesting things, about smalltalk, I think, was not the language itself, but the process that was used to arrive at the design of smalltalk. The iterative design process, going through many many revisions- But also very carefully and critically identifying the flaws of the existing system, and finding solutions in the next one. The more perspectives, and the broader the perspectives we have on the situation, the better we can judge where the mistakes and problems are. So don't just study computer science. Study as many other academic subjects as you can get yourself to be interested in.
有效的并行化和量子计算——我认为这是两个已经取得进展的领域,而且还将取得更大的进展,从而使我们对计算能力的使用发生重大变化。
有效的并行化意味着在不需要特殊编程技术的情况下并行和分布处理,但将其内置到编译器/框架中。
成功地将不同的编程范例集成到单一的编程环境中。
(对我来说)这方面的范例是Mozart/Oz编程系统,它将函数式、面向对象、逻辑、并发和分布式编程机制集成为一个连贯的整体。不过还有其他的例子。
Open Croquet http://www.opencroquet.org -一个吱吱声,基于smalltalk的3D环境,允许多个用户从内部交互和编程环境。它有自己的对象复制协议,用于在互联网上高效和可扩展地共享环境。**这很难描述,因为没有任何东西能像它一样……
1)我提出这个建议是因为当我试图向别人解释它是什么时,我发现他们希望我把它与其他东西进行比较……我还没有发现任何类似的东西,尽管有许多来自其他系统的元素(例如Smalltalk, Open GL, etoys,虚拟世界,远程协作,面向对象的复制架构),整体似乎远远超过部分…
2)不像这里提到的许多技术,它还没有成为一个广泛开发的商业利基市场……
这两点都是这项技术处于早期阶段的迹象。
我怀疑,当艾伦·凯开始研究这个问题时,他可能首先就考虑过这个问题的主题。
http://www.onlisareinsradar.com/archives/001281.php