有人知道如何在Python中从多维数组中提取列吗?
当前回答
只要使用转置(),就可以像求行一样简单地求列
matrix=np.array(originalMatrix).transpose()
print matrix[NumberOfColumns]
其他回答
您是否使用了NumPy数组?Python有array模块,但不支持多维数组。普通的Python列表也是一维的。
然而,如果你有一个简单的二维列表,像这样:
A = [[1,2,3,4],
[5,6,7,8]]
然后你可以像这样提取一个列:
def column(matrix, i):
return [row[i] for row in matrix]
提取第二列(索引1):
>>> column(A, 1)
[2, 6]
或者简单地说:
>>> [row[1] for row in A]
[2, 6]
[matrix[i][column] for i in range(len(matrix))]
def get_col(arr, col):
return map(lambda x : x[col], arr)
a = [[1,2,3,4], [5,6,7,8], [9,10,11,12],[13,14,15,16]]
print get_col(a, 3)
Python中的map函数是另一种方法。
>>> import numpy as np
>>> A = np.array([[1,2,3,4],[5,6,7,8]])
>>> A
array([[1, 2, 3, 4],
[5, 6, 7, 8]])
>>> A[:,2] # returns the third columm
array([3, 7])
参见:"numpy。“Arange”和“重塑”来分配内存
示例:(用矩阵(3x4)的形状分配数组)
nrows = 3
ncols = 4
my_array = numpy.arange(nrows*ncols, dtype='double')
my_array = my_array.reshape(nrows, ncols)
你也可以用这个:
values = np.array([[1,2,3],[4,5,6]])
values[...,0] # first column
#[1,4]
注意:这对于内置数组和未对齐的数组无效(例如np.array([[1,2,3],[4,5,6,7]]))