有人知道如何在Python中从多维数组中提取列吗?
当前回答
只要使用转置(),就可以像求行一样简单地求列
matrix=np.array(originalMatrix).transpose()
print matrix[NumberOfColumns]
其他回答
我更喜欢下一个提示: 将矩阵命名为matrix_a并使用column_number,例如:
import numpy as np
matrix_a = np.array([[1,2,3,4],[5,6,7,8],[9,10,11,12]])
column_number=2
# you can get the row from transposed matrix - it will be a column:
col=matrix_a.transpose()[column_number]
您是否使用了NumPy数组?Python有array模块,但不支持多维数组。普通的Python列表也是一维的。
然而,如果你有一个简单的二维列表,像这样:
A = [[1,2,3,4],
[5,6,7,8]]
然后你可以像这样提取一个列:
def column(matrix, i):
return [row[i] for row in matrix]
提取第二列(索引1):
>>> column(A, 1)
[2, 6]
或者简单地说:
>>> [row[1] for row in A]
[2, 6]
如果你在Python中有一个二维数组(不是numpy),你可以像这样提取所有的列,
data = [
['a', 1, 2],
['b', 3, 4],
['c', 5, 6]
]
columns = list(zip(*data))
print("column[0] = {}".format(columns[0]))
print("column[1] = {}".format(columns[1]))
print("column[2] = {}".format(columns[2]))
执行这段代码会得到,
>>> print("column[0] = {}".format(columns[0]))
column[0] = ('a', 'b', 'c')
>>> print("column[1] = {}".format(columns[1]))
column[1] = (1, 3, 5)
>>> print("column[2] = {}".format(columns[2]))
column[2] = (2, 4, 6)
我认为你想从一个数组中提取一个列,比如下面的数组
import numpy as np
A = np.array([[1,2,3,4],[5,6,7,8],[9,10,11,12]])
现在如果你想要得到格式中的第三列
D=array[[3],
[7],
[11]]
然后你需要首先把数组变成一个矩阵
B=np.asmatrix(A)
C=B[:,2]
D=asarray(C)
现在你可以做基于元素的计算就像你在excel中做的一样。
如果你喜欢map-reduce风格的python, itemgetter操作符也会有帮助,而不是列表推导式,为了一点变化!
# tested in 2.4
from operator import itemgetter
def column(matrix,i):
f = itemgetter(i)
return map(f,matrix)
M = [range(x,x+5) for x in range(10)]
assert column(M,1) == range(1,11)