我更喜欢尽可能少的正式定义和简单的数学。


当前回答

大 O 评级是描述算法将运行多快的方式,因为有意数量的输入参数,我们将称之为“n”。在计算机科学中是有用的,因为不同的机器以不同的速度运行,简单地说算法需要 5 秒,不会告诉你很多,因为虽然你可能运行一个系统与 4.5 GHz 八核处理器,我可能运行一个系统。

其他回答

Big-O 是由程序所消耗的资源增加率,即问题例大小。

资源:可能是CPU时间,可能是最大 RAM 空间。

说问题是“找到金额”,

int Sum(int*arr,int size){
      int sum=0;
      while(size-->0) 
         sum+=arr[size]; 

      return sum;
}

problem-instance= {5,10,15} ==> problem-instance-size = 3, iterations-in-loop= 3

problem-instance= {5,10,15,20,25} ==> problem-instance-size = 5 iterations-in-loop = 5

说问题是“找到组合”,

    void Combination(int*arr,int size)
    { int outer=size,inner=size;
      while(outer -->0) {
        inner=size;
        while(inner -->0)
          cout<<arr[outer]<<"-"<<arr[inner]<<endl;
      }
    }

problem-instance= {5,10,15} ==> problem-instance-size = 3, total-iterations = 3*3 = 9

problem-instance= {5,10,15,20,25} ==> problem-instance-size = 5, total-iterations= 5*5 = 25

对于“n”尺寸的输入,该程序以序列中的“n*n”节点的速度生长,因此,Big-O是N2以O(n2)表达。

EDIT:快注,这几乎是令人困惑的Big O评分(这是一个上线)与Theta评分(这是一个上线和下线)。在我的经验中,这实际上是非学术设置讨论的典型。

在一个句子中:随着你的工作的规模上升,完成工作需要多长时间?

“大O”评分的一个重要方面是,它不会说哪个算法会更快到一个特定的尺寸。 采取一个字符串(字符串,整体值)对一系列对(字符串,整体值)。 是否更快地找到字符串中的关键或字符串中的元素,基于字符串? (即字符串, “找到字符串部分与特定的关键相匹配的第一个元素” ) 字符串是基因。

仅仅是以快速而简单的方式表达一个算法的复杂性。 大 O 评分存在,以解释任何算法的最佳、最糟糕和平均案例时间复杂性。

否则,与这些功能工作是非常困难的,因为它们倾向于:

有太多的泡沫 - 像二进制搜索这样的算法通常运行得更快,因为序列分区工作得很好,因为 n = 2k − 1 的尺寸,因为序列分区工作得更快。 这个细节并不特别重要,但它警告我们,任何算法的准确时间复杂性功能可能非常复杂,如图2.2 所示,有很少的上下泡沫。

https://mimoza.marmara.edu.tr/~msakalli/cse706_12/SkienaTheAlgorithmDesignMan ual.pdf

要做一个字面类似,你不关心跑者能跑到100米,甚至跑到5K的速度,你更关心马拉松人,最好是超级马拉松人(除此之外,跑的类似性会崩溃,你必须转向“长跑”的形象意义)。

关于所有这些数学逻辑和多元化是什么? 显然算法与这些数学术语内在相关。 如果你测量区块上的所有孩子的高度,它会花费你那么多时间,因为有孩子。 这是内在相关的 n^1 或只是 n 的概念,在那里 n 是区块上的孩子数量。

我希望我已经解释说,大O的评级仅仅是关于长期,数学与计算方式有内在的联系,数学术语和其他简化与长期有相当常见的联系。

f(x) = k(x)g(x) k 与 a(如果 a = +∞,这意味着有 N 和 M 等数,以至于每个 x > N 的, < M 等数。

sin x = O(x) when x → 0. sin x = O(1) when x → +∞, x2 + x = O(x) when x → 0, x2 + x = O(x2) when x → +∞, ln(x) = o(x) = O(x) when x → +∞。

更多例子