我更喜欢尽可能少的正式定义和简单的数学。


当前回答

预告片

算法:解决问题的程序/公式


如何分析算法,如何比较算法?

例如:你和一个朋友被要求创建一个函数,将数字从 0 到 N. 你与 f(x) 和你的朋友与 g(x) 相同的结果,但两个函数有不同的算法。

Big-O 评分:描述运行时间将与输入相对增长的速度,因为输入随意大。

三个关键点:

比较运行时间的增长速度 不要比较准确的运行时间(取决于硬件) 只关心运行时间的增长与输入(n) 因为n 随意大,专注于将增长最快的术语,因为n 得到大(想想无限) AKA 无形分析

空间复杂性:除了时间复杂性之外,我们也关心空间复杂性(一个算法使用的内存/空间多少)。

其他回答

什么是“大O”笔记的明确英语解释?

在“大O”中,意思是“命令”(或准确地说“命令”),所以你可以从字面上得到它的想法,它是用来命令一些东西来比较它们。

“大O”做两件事:估计你的计算机适用于完成一个任务的方法的步骤多少。 方便这个过程与其他人进行比较,以确定它是否好? “大O”通过标准化评分实现上述两件事。 有七个最常用的评分O(1),这意味着你的计算机得到一个任务完成1步,这是很好的, 订单 No.1 O(logN), 平均值

此分類上一篇

请注意订单在线结束,只是为了更好地理解。有超过7个评分,如果所有可能性考虑。

概述“大O”描述算法的性能,并评估它;或者正式处理它,“大O”分类算法并标准化比较过程。

测量软件程序的速度非常困难,当我们尝试时,答案可以非常复杂,并且充满了例外和特殊案例,这是一个很大的问题,因为所有这些例外和特殊案例都令人沮丧和无助,当我们想比较两个不同的程序,以确定哪个是“最快”。

好事:

邪恶的:

和那可怕的:

Big-O 是由程序所消耗的资源增加率,即问题例大小。

资源:可能是CPU时间,可能是最大 RAM 空间。

说问题是“找到金额”,

int Sum(int*arr,int size){
      int sum=0;
      while(size-->0) 
         sum+=arr[size]; 

      return sum;
}

problem-instance= {5,10,15} ==> problem-instance-size = 3, iterations-in-loop= 3

problem-instance= {5,10,15,20,25} ==> problem-instance-size = 5 iterations-in-loop = 5

说问题是“找到组合”,

    void Combination(int*arr,int size)
    { int outer=size,inner=size;
      while(outer -->0) {
        inner=size;
        while(inner -->0)
          cout<<arr[outer]<<"-"<<arr[inner]<<endl;
      }
    }

problem-instance= {5,10,15} ==> problem-instance-size = 3, total-iterations = 3*3 = 9

problem-instance= {5,10,15,20,25} ==> problem-instance-size = 5, total-iterations= 5*5 = 25

对于“n”尺寸的输入,该程序以序列中的“n*n”节点的速度生长,因此,Big-O是N2以O(n2)表达。

大 O 评分是描述一个算法的空间或运行时间的上限的一种方式. n 是问题的元素数量(即序列的尺寸,树上的节点数量等) 我们有兴趣描述运行时间,因为 n 变得大。

要说二进制搜索有运行时间的O(登录)是说有某些恒定的c,你可以增加登录(n)通过它将总是比运行时间的二进制搜索。

换句话说,g(n)是你的算法的运行时间,我们说g(n) = O(f(n))当g(n) <=c*f(n)当n > k,当c和k是某些恒定的。

EDIT:快注,这几乎是令人困惑的Big O评分(这是一个上线)与Theta评分(这是一个上线和下线)。在我的经验中,这实际上是非学术设置讨论的典型。

在一个句子中:随着你的工作的规模上升,完成工作需要多长时间?

“大O”评分的一个重要方面是,它不会说哪个算法会更快到一个特定的尺寸。 采取一个字符串(字符串,整体值)对一系列对(字符串,整体值)。 是否更快地找到字符串中的关键或字符串中的元素,基于字符串? (即字符串, “找到字符串部分与特定的关键相匹配的第一个元素” ) 字符串是基因。