任何人只要长时间摆弄Python,都会被以下问题所困扰(或撕成碎片):

def foo(a=[]):
    a.append(5)
    return a

Python新手希望这个没有参数的函数总是返回一个只有一个元素的列表:[5]。结果却非常不同,非常令人惊讶(对于新手来说):

>>> foo()
[5]
>>> foo()
[5, 5]
>>> foo()
[5, 5, 5]
>>> foo()
[5, 5, 5, 5]
>>> foo()

我的一位经理曾第一次接触到这个功能,并称其为语言的“戏剧性设计缺陷”。我回答说,这种行为有一个潜在的解释,如果你不了解其内部,这确实非常令人困惑和意外。然而,我无法(对自己)回答以下问题:在函数定义时而不是在函数执行时绑定默认参数的原因是什么?我怀疑有经验的行为是否有实际用途(谁真的在C中使用了静态变量,而没有滋生bug?)

编辑:

Baczek举了一个有趣的例子。连同您的大多数评论,特别是Utaal的评论,我进一步阐述了:

>>> def a():
...     print("a executed")
...     return []
... 
>>>            
>>> def b(x=a()):
...     x.append(5)
...     print(x)
... 
a executed
>>> b()
[5]
>>> b()
[5, 5]

在我看来,设计决策似乎与将参数范围放在哪里有关:放在函数内部,还是与函数“一起”?

在函数内部进行绑定意味着当函数被调用而不是被定义时,x被有效地绑定到指定的默认值,这将带来一个严重的缺陷:def行将是“混合”的,即部分绑定(函数对象)将在定义时发生,部分绑定(默认参数的赋值)将在函数调用时发生。

实际行为更加一致:当执行该行时,该行的所有内容都会得到求值,这意味着在函数定义时。


当前回答

我有时会利用这种行为来替代以下模式:

singleton = None

def use_singleton():
    global singleton

    if singleton is None:
        singleton = _make_singleton()

    return singleton.use_me()

如果singleton仅由use_singleton使用,我喜欢以下模式作为替换:

# _make_singleton() is called only once when the def is executed
def use_singleton(singleton=_make_singleton()):
    return singleton.use_me()

我用它来实例化访问外部资源的客户机类,也用来创建用于内存化的字典或列表。

由于我不认为这种模式是众所周知的,所以我确实发表了简短的评论,以防止未来的误解。

其他回答

TLDR:定义时间默认值是一致的,严格来说更具表达力。


定义函数会影响两个作用域:包含函数的定义作用域和函数所包含的执行作用域。虽然很清楚块是如何映射到作用域的,但问题是def<name>(<args=defaults>):属于:

...                           # defining scope
def name(parameter=default):  # ???
    ...                       # execution scope

def-name部分必须在定义范围内求值,毕竟我们希望name在定义范围中可用。仅在函数内部求值将使其无法访问。

由于参数是一个常量名称,所以我们可以在定义名称的同时对其进行“求值”。这还有一个优点,它生成的函数具有已知签名name(parameter=…):,而不是裸名(…):。

现在,何时评估默认值?

一致性已经表明“在定义时”:def<name>(<args=defaults>)的所有其他属性:也最好在定义时进行评估。推迟部分时间将是一个令人惊讶的选择。

这两种选择也不等同:如果在定义时计算默认值,它仍然会影响执行时间。如果在执行时计算默认值,则不会影响定义时间。选择“at definition”可以表达两种情况,而选择“at executing”只能表达一种情况:

def name(parameter=defined):  # set default at definition time
    ...

def name(parameter=default):     # delay default until execution time
    parameter = default if parameter is None else parameter
    ...

这不是设计缺陷。任何人被这个绊倒都是在做错事。

我认为有3种情况可能会遇到此问题:

您打算将参数修改为函数的副作用。在这种情况下,使用默认参数是没有意义的。唯一的例外是当您滥用参数列表以具有函数属性时,例如cache={},并且根本不需要使用实际参数调用函数。你打算不修改参数,但你不小心修改了它。这是一个错误,修复它。您打算修改参数以在函数内部使用,但不希望修改在函数外部可见。在这种情况下,您需要复制参数,无论它是否为默认值!Python不是一种按值调用的语言,因此它不会为您创建副本,您需要对此进行明确说明。

问题中的例子可能属于第1类或第3类。奇怪的是,它既修改了传递的列表,又返回了它;你应该选择其中之一。

这里的解决方案是:

使用None作为默认值(或随机数对象),并在运行时打开它以创建值;或使用lambda作为默认参数,并在try块中调用它以获得默认值(这是lambda抽象的目的)。

第二个选项很好,因为函数的用户可以传入一个可调用的,它可能已经存在(例如类型)

每个其他的答案都解释了为什么这实际上是一个好的和期望的行为,或者为什么你无论如何都不需要这个。我是为那些顽固的人准备的,他们想行使自己的权利,让语言服从自己的意愿,而不是相反。

我们将使用一个装饰器来“修复”这个行为,该装饰器将复制默认值,而不是为保留在默认值的每个位置参数重复使用相同的实例。

import inspect
from copy import deepcopy  # copy would fail on deep arguments like nested dicts

def sanify(function):
    def wrapper(*a, **kw):
        # store the default values
        defaults = inspect.getargspec(function).defaults # for python2
        # construct a new argument list
        new_args = []
        for i, arg in enumerate(defaults):
            # allow passing positional arguments
            if i in range(len(a)):
                new_args.append(a[i])
            else:
                # copy the value
                new_args.append(deepcopy(arg))
        return function(*new_args, **kw)
    return wrapper

现在让我们使用这个装饰器重新定义我们的函数:

@sanify
def foo(a=[]):
    a.append(5)
    return a

foo() # '[5]'
foo() # '[5]' -- as desired

对于具有多个参数的函数来说,这一点尤为简洁。比较:

# the 'correct' approach
def bar(a=None, b=None, c=None):
    if a is None:
        a = []
    if b is None:
        b = []
    if c is None:
        c = []
    # finally do the actual work

with

# the nasty decorator hack
@sanify
def bar(a=[], b=[], c=[]):
    # wow, works right out of the box!

需要注意的是,如果您尝试使用关键字args,则上述解决方案会中断,如下所示:

foo(a=[4])

可以调整装饰器以允许这一点,但我们将此作为读者的练习;)

1) 所谓的“可变默认参数”问题通常是一个特殊的例子,表明:“所有存在此问题的函数在实际参数上也存在类似的副作用问题,”这违反了函数式编程的规则,通常是不可想象的,应该将两者结合起来。

例子:

def foo(a=[]):                 # the same problematic function
    a.append(5)
    return a

>>> somevar = [1, 2]           # an example without a default parameter
>>> foo(somevar)
[1, 2, 5]
>>> somevar
[1, 2, 5]                      # usually expected [1, 2]

解决方案:副本一个绝对安全的解决方案是首先复制或深度复制输入对象,然后对复制进行任何操作。

def foo(a=[]):
    a = a[:]     # a copy
    a.append(5)
    return a     # or everything safe by one line: "return a + [5]"

许多内置可变类型都有一个复制方法,比如some_dict.copy()或some_set.copy(),或者可以像somelist[:]或list(some_list)那样轻松复制。每个对象也可以通过copy.copy(any_object)进行复制,或者通过copy.deepcopy()进行更彻底的复制(如果可变对象是由可变对象组成的,则后者很有用)。有些对象基本上基于“文件”对象等副作用,无法通过复制进行有意义的复制。复制

类似SO问题的示例问题

class Test(object):            # the original problematic class
  def __init__(self, var1=[]):
    self._var1 = var1

somevar = [1, 2]               # an example without a default parameter
t1 = Test(somevar)
t2 = Test(somevar)
t1._var1.append([1])
print somevar                  # [1, 2, [1]] but usually expected [1, 2]
print t2._var1                 # [1, 2, [1]] but usually expected [1, 2]

它不应该保存在该函数返回的实例的任何公共属性中。(假设实例的私有属性不应按照约定从该类或子类之外进行修改。即_var1是私有属性)

结论:输入参数对象不应就地修改(变异),也不应绑定到函数返回的对象中。(如果我们更喜欢没有副作用的编程,这是强烈建议的。请参阅Wiki中关于“副作用”的内容(前两段与本文相关)。).)

2)只有当对实际参数的副作用是必需的,但对默认参数不需要时,有用的解决方案才是def。。。(var1=无):如果var1为无:var1=[]更多。。

3) 在某些情况下,默认参数的可变行为很有用。