如何以最有效的内存和时间方式获取大文件的行数?

def file_len(filename):
    with open(filename) as f:
        for i, _ in enumerate(f):
            pass
    return i + 1

当前回答

这个呢

def file_len(fname):
  counts = itertools.count()
  with open(fname) as f: 
    for _ in f: counts.next()
  return counts.next()

其他回答

我修改了缓冲区的情况如下:

def CountLines(filename):
    f = open(filename)
    try:
        lines = 1
        buf_size = 1024 * 1024
        read_f = f.read # loop optimization
        buf = read_f(buf_size)

        # Empty file
        if not buf:
            return 0

        while buf:
            lines += buf.count('\n')
            buf = read_f(buf_size)

        return lines
    finally:
        f.close()

现在空文件和最后一行(不带\n)也被计算在内。

我会使用Python的文件对象方法readlines,如下所示:

with open(input_file) as foo:
    lines = len(foo.readlines())

这将打开文件,在文件中创建一个行列表,计算列表的长度,将其保存到一个变量中,然后再次关闭文件。

print open('file.txt', 'r').read().count("\n") + 1

对我来说,这个变体是最快的:

#!/usr/bin/env python

def main():
    f = open('filename')                  
    lines = 0
    buf_size = 1024 * 1024
    read_f = f.read # loop optimization

    buf = read_f(buf_size)
    while buf:
        lines += buf.count('\n')
        buf = read_f(buf_size)

    print lines

if __name__ == '__main__':
    main()

原因:缓冲比逐行和逐字符串读取快。计数也非常快

def line_count(path):
    count = 0
    with open(path) as lines:
        for count, l in enumerate(lines, start=1):
            pass
    return count