如何以最有效的内存和时间方式获取大文件的行数?
def file_len(filename):
with open(filename) as f:
for i, _ in enumerate(f):
pass
return i + 1
如何以最有效的内存和时间方式获取大文件的行数?
def file_len(filename):
with open(filename) as f:
for i, _ in enumerate(f):
pass
return i + 1
当前回答
我修改了缓冲区的情况如下:
def CountLines(filename):
f = open(filename)
try:
lines = 1
buf_size = 1024 * 1024
read_f = f.read # loop optimization
buf = read_f(buf_size)
# Empty file
if not buf:
return 0
while buf:
lines += buf.count('\n')
buf = read_f(buf_size)
return lines
finally:
f.close()
现在空文件和最后一行(不带\n)也被计算在内。
其他回答
对我来说,这个变体是最快的:
#!/usr/bin/env python
def main():
f = open('filename')
lines = 0
buf_size = 1024 * 1024
read_f = f.read # loop optimization
buf = read_f(buf_size)
while buf:
lines += buf.count('\n')
buf = read_f(buf_size)
print lines
if __name__ == '__main__':
main()
原因:缓冲比逐行和逐字符串读取快。计数也非常快
下面这句话怎么样:
file_length = len(open('myfile.txt','r').read().split('\n'))
用这种方法在一个3900行的文件上计时只需要0.003秒
def c():
import time
s = time.time()
file_length = len(open('myfile.txt','r').read().split('\n'))
print time.time() - s
我相信内存映射文件将是最快的解决方案。我尝试了四个函数:由OP发布的函数(opcount);对文件中的行进行简单迭代(simplecount);带有内存映射字段(mmap)的Readline (mapcount);以及Mykola Kharechko (buffcount)提供的缓冲区读取解决方案。
我将每个函数运行五次,并计算出120万在线文本文件的平均运行时间。
Windows XP, Python 2.5, 2GB RAM, 2ghz AMD处理器
以下是我的结果:
mapcount : 0.465599966049
simplecount : 0.756399965286
bufcount : 0.546800041199
opcount : 0.718600034714
编辑:Python 2.6的数字:
mapcount : 0.471799945831
simplecount : 0.634400033951
bufcount : 0.468800067902
opcount : 0.602999973297
因此,对于Windows/Python 2.6,缓冲区读取策略似乎是最快的
代码如下:
from __future__ import with_statement
import time
import mmap
import random
from collections import defaultdict
def mapcount(filename):
f = open(filename, "r+")
buf = mmap.mmap(f.fileno(), 0)
lines = 0
readline = buf.readline
while readline():
lines += 1
return lines
def simplecount(filename):
lines = 0
for line in open(filename):
lines += 1
return lines
def bufcount(filename):
f = open(filename)
lines = 0
buf_size = 1024 * 1024
read_f = f.read # loop optimization
buf = read_f(buf_size)
while buf:
lines += buf.count('\n')
buf = read_f(buf_size)
return lines
def opcount(fname):
with open(fname) as f:
for i, l in enumerate(f):
pass
return i + 1
counts = defaultdict(list)
for i in range(5):
for func in [mapcount, simplecount, bufcount, opcount]:
start_time = time.time()
assert func("big_file.txt") == 1209138
counts[func].append(time.time() - start_time)
for key, vals in counts.items():
print key.__name__, ":", sum(vals) / float(len(vals))
没有比这更好的了。
毕竟,任何解决方案都必须读取整个文件,计算出有多少\n,并返回结果。
在不读取整个文件的情况下,你有更好的方法吗?不确定……最好的解决方案总是I/ o受限,你能做的最好的就是确保不使用不必要的内存,但看起来你已经覆盖了这个问题。
如果文件能放进内存,那么
with open(fname) as f:
count = len(f.read().split(b'\n')) - 1