我想测量执行一个函数所花费的时间。我没时间工作:

import timeit
start = timeit.timeit()
print("hello")
end = timeit.timeit()
print(end - start)

当前回答

虽然问题中没有严格要求,但通常情况下,您需要一种简单、统一的方法来递增地测量几行代码之间的经过时间。

如果您使用的是Python 3.8或更高版本,则可以使用赋值表达式(也称为walrus运算符)以相当优雅的方式实现这一点:

import time

start, times = time.perf_counter(), {}

print("hello")
times["print"] = -start + (start := time.perf_counter())

time.sleep(1.42)
times["sleep"] = -start + (start := time.perf_counter())

a = [n**2 for n in range(10000)]
times["pow"] = -start + (start := time.perf_counter())

print(times)

=>

{'print': 2.193450927734375e-05, 'sleep': 1.4210970401763916, 'power': 0.005671024322509766}

其他回答

下面是一个返回“hh:mm:ss”字符串的小型计时器类:

class Timer:
  def __init__(self):
    self.start = time.time()

  def restart(self):
    self.start = time.time()

  def get_time_hhmmss(self):
    end = time.time()
    m, s = divmod(end - self.start, 60)
    h, m = divmod(m, 60)
    time_str = "%02d:%02d:%02d" % (h, m, s)
    return time_str

用法:

# Start timer
my_timer = Timer()

# ... do something

# Get time string:
time_hhmmss = my_timer.get_time_hhmmss()
print("Time elapsed: %s" % time_hhmmss )

# ... use the timer again
my_timer.restart()

# ... do something

# Get time:
time_hhmmss = my_timer.get_time_hhmmss()

# ... etc

测量小代码片段的执行时间。

时间单位:以秒为单位,以浮点数表示

import timeit
t = timeit.Timer('li = list(map(lambda x:x*2,[1,2,3,4,5]))')
t.timeit()
t.repeat()
>[1.2934070999999676, 1.3335035000000062, 1.422568500000125]

repeat()方法可以方便地多次调用timeit()并返回结果列表。重复(重复=3)¶有了这个列表,我们可以计算所有时间的平均值。默认情况下,timeit()在计时期间暂时关闭垃圾收集。time.Timer()解决了这个问题。赞成的意见:timeit.Timer()使独立计时更具可比性。gc可能是被测函数性能的重要组成部分。如果是,gc(垃圾收集器)可以作为设置字符串中的第一条语句重新启用。例如:timeit.Timer('li=列表(映射(lambda x:x*2,[1,2,3,4,5])',设置='gc.enable()')

源Python文档!

对于Python 3

如果使用时间模块,则可以获取当前时间戳,然后执行代码,然后再次获取时间戳。现在,所用时间将是第一个时间戳减去第二个时间戳:

import time

first_stamp = int(round(time.time() * 1000))

# YOUR CODE GOES HERE
time.sleep(5)

second_stamp = int(round(time.time() * 1000))

# Calculate the time taken in milliseconds
time_taken = second_stamp - first_stamp

# To get time in seconds:
time_taken_seconds = round(time_taken / 1000)
print(f'{time_taken_seconds} seconds or {time_taken} milliseconds')

给定要计时的函数,

测试.py:

def foo(): 
    # print "hello"   
    return "hello"

使用timeit的最简单方法是从命令行调用它:

% python -mtimeit -s'import test' 'test.foo()'
1000000 loops, best of 3: 0.254 usec per loop

不要尝试使用time.time或time.clock(天真地)来比较函数的速度。他们会给出误导性的结果。

PS.不要将打印语句放在您希望计时的函数中;否则测量的时间将取决于终端的速度。

您可以使用Benchmark Timer(免责声明:我是作者):

基准计时器使用BenchmarkTimer类来测量执行某段代码所需的时间。这比内置的timeit函数具有更大的灵活性,并且与其他代码在相同的范围内运行。安装pip安装git+https://github.com/michaelitvin/benchmark-timer.git@main#egg=基准计时器用法单次迭代示例从benchmark_timer导入BenchmarkTimer导入时间使用BenchmarkTimer(name=“MySimpleCode”)作为tm,tm.single_ieration():睡眠时间(.3)输出:正在对标MySimpleCode。。。MySimpleCode基准:n_iters=1 avg=0.300881s std=0.000000s range=[0.3000881s ~ 0.300881s]多次迭代示例从benchmark_timer导入BenchmarkTimer导入时间使用BenchmarkTimer(name=“MyTimedCode”,print_iters=True)作为tm:对于tm迭代中的timing_iteration(n=5,预热=2):定时重复:睡眠时间(.1)打印(“\n===============\n”)print(“定时列表:”,列表(tm.timenings.values()))输出:正在对标MyTimedCode。。。[MyTimedCode]iter=0耗时0.099755s(预热)[MyTimedCode]iter=1耗时0.100476秒(预热)[MyTimedCode]iter=2耗时0.100189秒[MyTimedCode]iter=3耗时0.099900s[MyTimedCode]iter=4耗时0.100888秒MyTimedCode基准:n_iters=3 avg=0.100326s std=0.000414s range=[0.099900s ~ 0.100888s]===================时间列表:[0.1001885000000001,0.09990049999999995,0.10088760000000008]