我想测量执行一个函数所花费的时间。我没时间工作:
import timeit
start = timeit.timeit()
print("hello")
end = timeit.timeit()
print(end - start)
我想测量执行一个函数所花费的时间。我没时间工作:
import timeit
start = timeit.timeit()
print("hello")
end = timeit.timeit()
print(end - start)
当前回答
python cProfile和pstats模块为测量某些函数的时间提供了强大的支持,而无需在现有函数周围添加任何代码。
例如,如果您有python脚本timeFunctions.py:
import time
def hello():
print "Hello :)"
time.sleep(0.1)
def thankyou():
print "Thank you!"
time.sleep(0.05)
for idx in range(10):
hello()
for idx in range(100):
thankyou()
要运行探查器并生成文件的统计信息,只需运行:
python -m cProfile -o timeStats.profile timeFunctions.py
这是在使用cProfile模块来评测timeFunctions.py中的所有函数,并在timeStats.profile文件中收集统计信息。注意,我们不必向现有模块(timeFunctions.py)添加任何代码,这可以通过任何模块来完成。
一旦有了stats文件,就可以按如下方式运行pstats模块:
python -m pstats timeStats.profile
这将运行交互式统计浏览器,它为您提供了许多不错的功能。对于您的特定用例,您可以只检查函数的统计信息。在我们的示例中,检查两个函数的统计信息显示如下:
Welcome to the profile statistics browser.
timeStats.profile% stats hello
<timestamp> timeStats.profile
224 function calls in 6.014 seconds
Random listing order was used
List reduced from 6 to 1 due to restriction <'hello'>
ncalls tottime percall cumtime percall filename:lineno(function)
10 0.000 0.000 1.001 0.100 timeFunctions.py:3(hello)
timeStats.profile% stats thankyou
<timestamp> timeStats.profile
224 function calls in 6.014 seconds
Random listing order was used
List reduced from 6 to 1 due to restriction <'thankyou'>
ncalls tottime percall cumtime percall filename:lineno(function)
100 0.002 0.000 5.012 0.050 timeFunctions.py:7(thankyou)
这个假例子做不了什么,但给了你一个可以做什么的想法。这种方法最好的一点是,我不必编辑任何现有代码来获取这些数字,并且显然有助于分析。
其他回答
测量时间(秒):
from timeit import default_timer as timer
from datetime import timedelta
start = timer()
# ....
# (your code runs here)
# ...
end = timer()
print(timedelta(seconds=end-start))
输出:
0:00:01.946339
使用time.time来测量执行情况,可以获得命令的总体执行时间,包括计算机上其他进程花费的运行时间。这是用户注意到的时候,但如果你想比较不同的代码片段/算法/函数/。。。
有关timeit的更多信息:
使用timeit模块timeit–对少量Python代码的执行进行计时
如果您想深入了解剖析:
http://wiki.python.org/moin/PythonSpeed/PerformanceTips#Profiling_Code如何评测python脚本?
更新:我使用http://pythonhosted.org/line_profiler/在过去的一年中,我们做了很多工作,发现它非常有用,建议使用它来代替Pythons配置文件模块。
作为lambda,获取经过的时间和时间戳:
import datetime
t_set = lambda: datetime.datetime.now().astimezone().replace(microsecond=0)
t_diff = lambda t: str(t_set() - t)
t_stamp = lambda t=None: str(t) if t else str(t_set())
在实践中:
>>>
>>> t_set()
datetime.datetime(2021, 3, 21, 1, 25, 17, tzinfo=datetime.timezone(datetime.timedelta(days=-1, seconds=61200), 'PDT'))
>>> t = t_set()
>>> t_diff(t)
'0:00:14'
>>> t_diff(t)
'0:00:23'
>>> t_stamp()
'2021-03-21 01:25:57-07:00'
>>> t_stamp(t)
'2021-03-21 01:25:22-07:00'
>>>
测量小代码片段的执行时间。
时间单位:以秒为单位,以浮点数表示
import timeit
t = timeit.Timer('li = list(map(lambda x:x*2,[1,2,3,4,5]))')
t.timeit()
t.repeat()
>[1.2934070999999676, 1.3335035000000062, 1.422568500000125]
repeat()方法可以方便地多次调用timeit()并返回结果列表。重复(重复=3)¶有了这个列表,我们可以计算所有时间的平均值。默认情况下,timeit()在计时期间暂时关闭垃圾收集。time.Timer()解决了这个问题。赞成的意见:timeit.Timer()使独立计时更具可比性。gc可能是被测函数性能的重要组成部分。如果是,gc(垃圾收集器)可以作为设置字符串中的第一条语句重新启用。例如:timeit.Timer('li=列表(映射(lambda x:x*2,[1,2,3,4,5])',设置='gc.enable()')
源Python文档!
print_elapsed_time函数如下
def print_elapsed_time(prefix=''):
e_time = time.time()
if not hasattr(print_elapsed_time, 's_time'):
print_elapsed_time.s_time = e_time
else:
print(f'{prefix} elapsed time: {e_time - print_elapsed_time.s_time:.2f} sec')
print_elapsed_time.s_time = e_time
用这种方式
print_elapsed_time()
.... heavy jobs ...
print_elapsed_time('after heavy jobs')
.... tons of jobs ...
print_elapsed_time('after tons of jobs')
结果是
after heavy jobs elapsed time: 0.39 sec
after tons of jobs elapsed time: 0.60 sec
这个函数的优点和缺点是你不需要经过开始时间