我想测量执行一个函数所花费的时间。我没时间工作:

import timeit
start = timeit.timeit()
print("hello")
end = timeit.timeit()
print(end - start)

当前回答

我们还可以将时间转换为人类可读的时间。

import time, datetime

start = time.clock()

def num_multi1(max):
    result = 0
    for num in range(0, 1000):
        if (num % 3 == 0 or num % 5 == 0):
            result += num

    print "Sum is %d " % result

num_multi1(1000)

end = time.clock()
value = end - start
timestamp = datetime.datetime.fromtimestamp(value)
print timestamp.strftime('%Y-%m-%d %H:%M:%S')

其他回答

python cProfile和pstats模块为测量某些函数的时间提供了强大的支持,而无需在现有函数周围添加任何代码。

例如,如果您有python脚本timeFunctions.py:

import time

def hello():
    print "Hello :)"
    time.sleep(0.1)

def thankyou():
    print "Thank you!"
    time.sleep(0.05)

for idx in range(10):
    hello()

for idx in range(100):
    thankyou()

要运行探查器并生成文件的统计信息,只需运行:

python -m cProfile -o timeStats.profile timeFunctions.py

这是在使用cProfile模块来评测timeFunctions.py中的所有函数,并在timeStats.profile文件中收集统计信息。注意,我们不必向现有模块(timeFunctions.py)添加任何代码,这可以通过任何模块来完成。

一旦有了stats文件,就可以按如下方式运行pstats模块:

python -m pstats timeStats.profile

这将运行交互式统计浏览器,它为您提供了许多不错的功能。对于您的特定用例,您可以只检查函数的统计信息。在我们的示例中,检查两个函数的统计信息显示如下:

Welcome to the profile statistics browser.
timeStats.profile% stats hello
<timestamp>    timeStats.profile

         224 function calls in 6.014 seconds

   Random listing order was used
   List reduced from 6 to 1 due to restriction <'hello'>

   ncalls  tottime  percall  cumtime  percall filename:lineno(function)
       10    0.000    0.000    1.001    0.100 timeFunctions.py:3(hello)

timeStats.profile% stats thankyou
<timestamp>    timeStats.profile

         224 function calls in 6.014 seconds

   Random listing order was used
   List reduced from 6 to 1 due to restriction <'thankyou'>

   ncalls  tottime  percall  cumtime  percall filename:lineno(function)
      100    0.002    0.000    5.012    0.050 timeFunctions.py:7(thankyou)

这个假例子做不了什么,但给了你一个可以做什么的想法。这种方法最好的一点是,我不必编辑任何现有代码来获取这些数字,并且显然有助于分析。

import time

def getElapsedTime(startTime, units):
    elapsedInSeconds = time.time() - startTime
    if units == 'sec':
        return elapsedInSeconds
    if units == 'min':
        return elapsedInSeconds/60
    if units == 'hour':
        return elapsedInSeconds/(60*60)

我参加聚会已经很晚了,但这种方法以前没有涉及过。当我们想要手动对某段代码进行基准测试时,我们可能需要首先找出哪些类方法占用了执行时间,这有时并不明显。我构建了以下元类来解决这个问题:

from __future__ import annotations

from functools import wraps
from time import time
from typing import Any, Callable, TypeVar, cast

F = TypeVar('F', bound=Callable[..., Any])


def timed_method(func: F, prefix: str | None = None) -> F:
    prefix = (prefix + ' ') if prefix else ''

    @wraps(func)
    def inner(*args, **kwargs):  # type: ignore
        start = time()
        try:
            ret = func(*args, **kwargs)
        except BaseException:
            print(f'[ERROR] {prefix}{func.__qualname__}: {time() - start}')
            raise
        
        print(f'{prefix}{func.__qualname__}: {time() - start}')
        return ret

    return cast(F, inner)


class TimedClass(type):
    def __new__(
        cls: type[TimedClass],
        name: str,
        bases: tuple[type[type], ...],
        attrs: dict[str, Any],
        **kwargs: Any,
    ) -> TimedClass:
        for name, attr in attrs.items():
            if isinstance(attr, (classmethod, staticmethod)):
                attrs[name] = type(attr)(timed_method(attr.__func__))
            elif isinstance(attr, property):
                attrs[name] = property(
                    timed_method(attr.fget, 'get') if attr.fget is not None else None,
                    timed_method(attr.fset, 'set') if attr.fset is not None else None,
                    timed_method(attr.fdel, 'del') if attr.fdel is not None else None,
                )
            elif callable(attr):
                attrs[name] = timed_method(attr)

        return super().__new__(cls, name, bases, attrs)

它允许如下使用:

class MyClass(metaclass=TimedClass):
    def foo(self): 
        print('foo')
    
    @classmethod
    def bar(cls): 
        print('bar')
    
    @staticmethod
    def baz(): 
        print('baz')
    
    @property
    def prop(self): 
        print('prop')
    
    @prop.setter
    def prop(self, v): 
        print('fset')
    
    @prop.deleter
    def prop(self): 
        print('fdel')


c = MyClass()

c.foo()
c.bar()
c.baz()
c.prop
c.prop = 2
del c.prop

MyClass.bar()
MyClass.baz()

它打印:

foo
MyClass.foo: 1.621246337890625e-05
bar
MyClass.bar: 4.5299530029296875e-06
baz
MyClass.baz: 4.291534423828125e-06
prop
get MyClass.prop: 3.814697265625e-06
fset
set MyClass.prop: 3.5762786865234375e-06
fdel
del MyClass.prop: 3.5762786865234375e-06
bar
MyClass.bar: 3.814697265625e-06
baz
MyClass.baz: 4.0531158447265625e-06

它可以与其他答案相结合,以更精确的方式代替time.time。

以下是一个答案,使用:

对代码片段进行计时的简洁上下文管理器time.perf_counter()计算时间增量。与time.time()相反,它是不可调整的(sysadmin和守护程序都不能更改其值),因此应该首选它(参见文档)python3.10+(因为键入,但可以很容易地适应以前的版本)

import time
from contextlib import contextmanager
from typing import Iterator

@contextmanager
def time_it() -> Iterator[None]:
    tic: float = time.perf_counter()
    try:
        yield
    finally:
        toc: float = time.perf_counter()
        print(f"Computation time = {1000*(toc - tic):.3f}ms")

如何使用它的示例:

# Example: vector dot product computation
with time_it():
    A = B = range(1000000)
    dot = sum(a*b for a,b in zip(A,B))
# Computation time = 95.353ms

附录

import time

# to check adjustability
assert time.get_clock_info('time').adjustable
assert time.get_clock_info('perf_counter').adjustable is False

你可以使用timeit。

下面是一个示例,说明如何使用Python REPL测试naive_func,该函数接受参数:

>>> import timeit                                                                                         

>>> def naive_func(x):                                                                                    
...     a = 0                                                                                             
...     for i in range(a):                                                                                
...         a += i                                                                                        
...     return a                                                                                          

>>> def wrapper(func, *args, **kwargs):                                                                   
...     def wrapper():                                                                                    
...         return func(*args, **kwargs)                                                                  
...     return wrapper                                                                                    

>>> wrapped = wrapper(naive_func, 1_000)                                                                  

>>> timeit.timeit(wrapped, number=1_000_000)                                                              
0.4458435332577161  

若函数并没有任何参数,那个么就不需要包装函数。