假设您在Java中有一个链表结构。它由节点组成:

class Node {
    Node next;
    // some user data
}

每个节点都指向下一个节点,除了最后一个节点,它的next为空。假设有一种可能性,列表可以包含一个循环-即最后的节点,而不是有一个空值,有一个引用到列表中它之前的一个节点。

最好的写作方式是什么

boolean hasLoop(Node first)

如果给定的节点是带有循环的列表的第一个,则返回true,否则返回false ?你怎么能写出一个常数的空间和合理的时间呢?

下面是一个带有循环的列表的图片:


当前回答

下面是快速/慢速解决方案的改进,它正确地处理奇数长度的列表并提高了清晰度。

boolean hasLoop(Node first) {
    Node slow = first;
    Node fast = first;

    while(fast != null && fast.next != null) {
        slow = slow.next;          // 1 hop
        fast = fast.next.next;     // 2 hops 

        if(slow == fast)  // fast caught up to slow, so there is a loop
            return true;
    }
    return false;  // fast reached null, so the list terminates
}

其他回答

在这个上下文中,到处都有文本材料的加载。我只是想张贴一个图表表示,真正帮助我掌握概念。

当快、慢在点p相遇时,

快速行进的距离= a+b+c+b = a+2b+c

慢行距离= a+b

因为快的比慢的快2倍。 所以a+2b+c = 2(a+b)然后得到a=c。

因此,当另一个慢指针再次从头部运行到q时,同时,快速指针将从p运行到q,因此它们在q点会合。

public ListNode detectCycle(ListNode head) {
    if(head == null || head.next==null)
        return null;

    ListNode slow = head;
    ListNode fast = head;

    while (fast!=null && fast.next!=null){
        fast = fast.next.next;
        slow = slow.next;

        /*
        if the 2 pointers meet, then the 
        dist from the meeting pt to start of loop 
        equals
        dist from head to start of loop
        */
        if (fast == slow){ //loop found
            slow = head;
            while(slow != fast){
                slow = slow.next;
                fast = fast.next;
            }
            return slow;
        }            
    }
    return null;
}

如果允许我们嵌入类Node,我将像下面实现的那样解决这个问题。hasLoop()在O(n)时间内运行,并且只占用计数器的空间。这是不是一个合适的解决方案?或者是否有一种不嵌入Node的方法?(显然,在真正的实现中会有更多的方法,如RemoveNode(Node n)等。)

public class LinkedNodeList {
    Node first;
    Int count;

    LinkedNodeList(){
        first = null;
        count = 0;
    }

    LinkedNodeList(Node n){
        if (n.next != null){
            throw new error("must start with single node!");
        } else {
            first = n;
            count = 1;
        }
    }

    public void addNode(Node n){
        Node lookingAt = first;

        while(lookingAt.next != null){
            lookingAt = lookingAt.next;
        }

        lookingAt.next = n;
        count++;
    }

    public boolean hasLoop(){

        int counter = 0;
        Node lookingAt = first;

        while(lookingAt.next != null){
            counter++;
            if (count < counter){
                return false;
            } else {
               lookingAt = lookingAt.next;
            }
        }

        return true;

    }



    private class Node{
        Node next;
        ....
    }

}

乌龟和兔子

看看波拉德的算法。这不是完全相同的问题,但也许你会理解其中的逻辑,并将其应用于链表。

(如果你很懒,你可以看看周期检测——看看关于乌龟和兔子的那部分。)

这只需要线性时间和2个额外的指针。

在Java中:

boolean hasLoop( Node first ) {
    if ( first == null ) return false;

    Node turtle = first;
    Node hare = first;

    while ( hare.next != null && hare.next.next != null ) {
         turtle = turtle.next;
         hare = hare.next.next;

         if ( turtle == hare ) return true;
    }

    return false;
}

(大多数解决方案不会同时检查next和next。接下来是null。此外,因为乌龟总是在后面,你不需要检查它是否为空——兔子已经检查过了。)

下面的方法可能不是最好的——它是O(n²)。然而,它应该有助于完成工作(最终)。

count_of_elements_so_far = 0;
for (each element in linked list)
{
    search for current element in first <count_of_elements_so_far>
    if found, then you have a loop
    else,count_of_elements_so_far++;
}
 // To detect whether a circular loop exists in a linked list
public boolean findCircularLoop() {
    Node slower, faster;
    slower = head;
    faster = head.next; // start faster one node ahead
    while (true) {

        // if the faster pointer encounters a NULL element
        if (faster == null || faster.next == null)
            return false;
        // if faster pointer ever equals slower or faster's next
        // pointer is ever equal to slower then it's a circular list
        else if (slower == faster || slower == faster.next)
            return true;
        else {
            // advance the pointers
            slower = slower.next;
            faster = faster.next.next;
        }
    }
}