下面是我生成一个数据框架的代码:

import pandas as pd
import numpy as np

dff = pd.DataFrame(np.random.randn(1,2),columns=list('AB'))

然后我得到了数据框架:

+------------+---------+--------+
|            |  A      |  B     |
+------------+---------+---------
|      0     | 0.626386| 1.52325|
+------------+---------+--------+

当我输入命令时:

dff.mean(axis=1)

我得到:

0    1.074821
dtype: float64

根据pandas的参考,axis=1代表列,我希望命令的结果是

A    0.626386
B    1.523255
dtype: float64

我的问题是:轴在熊猫中是什么意思?


当前回答

实际上我们不需要记住轴=0轴=1代表什么。 有时,axis可以是一个元组:例如axis=(0,1)我们如何理解这样多个dim轴?

我发现如果我们理解python slice[:]是如何工作的,就会更容易。

假设我们有一个一维数组: A = [0,1,0]

a[:] # select all the elements in array a

假设我们有一个2d数组:

M = [[0, 0, 1],
     [1, 0, 0],
     [0, 2, 1],
     [2, 0, 2],
     [3, 1, 0]]
M[1,:] # M[0]=1, M[1]=* --> [1, 0, 0]
M[:,2] # M[0]=*, M[1]=2 --> [1, 0, 1, 2, 0]
M[:,:] # M[0]=*, M[1]=* --> all the elements in M are selected

当计算时:

np.sum(M, axis=0) # [sum(M[:,0]), sum(M[:,1]), sum(M[:,2])]
np.sum(M, axis=1) # [sum(M[0,:]), sum(M[1,:]), sum(M[2,:]), sum(M[3,:]), sum(M[4,:])]
np.sum(M, axis=-1) # -1 means last dim, it's the same with np.sum(M, axis=1)
np.sum(M, axis=(0,1)) # sum(M[:,:])

规则很简单,当计算时将axis中指定的暗值替换为:。

其他回答

这些答案确实有助于解释这一点,但对于非程序员(例如,像我这样第一次在数据科学课程背景下学习Python的人)来说,它仍然不是完全直观的。我仍然发现使用术语“沿着”或“每个”wrt的行和列是令人困惑的。

对我来说更有意义的是这样说:

轴0将作用于每个COLUMN中的所有row 轴1将作用于每个ROW中的所有COLUMNS

0轴上的均值是每列中所有行的均值,1轴上的均值是每行中所有列的均值。

从根本上说,这和@zhangxaochen和@Michael的意思是一样的,只是用一种更容易让我内化的方式。

实际上我们不需要记住轴=0轴=1代表什么。 有时,axis可以是一个元组:例如axis=(0,1)我们如何理解这样多个dim轴?

我发现如果我们理解python slice[:]是如何工作的,就会更容易。

假设我们有一个一维数组: A = [0,1,0]

a[:] # select all the elements in array a

假设我们有一个2d数组:

M = [[0, 0, 1],
     [1, 0, 0],
     [0, 2, 1],
     [2, 0, 2],
     [3, 1, 0]]
M[1,:] # M[0]=1, M[1]=* --> [1, 0, 0]
M[:,2] # M[0]=*, M[1]=2 --> [1, 0, 1, 2, 0]
M[:,:] # M[0]=*, M[1]=* --> all the elements in M are selected

当计算时:

np.sum(M, axis=0) # [sum(M[:,0]), sum(M[:,1]), sum(M[:,2])]
np.sum(M, axis=1) # [sum(M[0,:]), sum(M[1,:]), sum(M[2,:]), sum(M[3,:]), sum(M[4,:])]
np.sum(M, axis=-1) # -1 means last dim, it's the same with np.sum(M, axis=1)
np.sum(M, axis=(0,1)) # sum(M[:,:])

规则很简单,当计算时将axis中指定的暗值替换为:。

它指定了计算平均值的轴。默认情况下axis=0。这与numpy一致。显式指定axis时的平均使用量(在numpy中)。mean, axis==None,默认情况下,它计算扁平数组上的平均值),其中,沿行轴=0(即,以pandas为单位的索引),沿列轴=1。为了增加清晰度,可以选择指定axis='index'(而不是axis=0)或axis='columns'(而不是axis=1)。

+------------+---------+--------+
|            |  A      |  B     |
+------------+---------+---------
|      0     | 0.626386| 1.52325|----axis=1----->
+------------+---------+--------+
             |         |
             | axis=0  |
             ↓         ↓

我对熊猫还是个新手。但这是我对熊猫轴的理解:


恒变方向


0列行向下|


1行列向右——>


所以要计算一列的均值,这一列应该是常数,但它下面的行可以改变(变化)所以它是axis=0。

类似地,要计算一行的平均值,特定的行是常数,但它可以遍历不同的列(变化),axis=1。

我的想法是:Axis = n,其中n = 0,1等意味着矩阵沿该轴折叠(折叠)。所以在一个二维矩阵中,当你沿着0(行)折叠时,你实际上是一次对一列进行操作。对于高阶矩阵也是如此。

这与对矩阵中维数的正常引用不同,其中0 ->行和1 ->列。对于N维数组中的其他维度也是如此。