下面是我生成一个数据框架的代码:

import pandas as pd
import numpy as np

dff = pd.DataFrame(np.random.randn(1,2),columns=list('AB'))

然后我得到了数据框架:

+------------+---------+--------+
|            |  A      |  B     |
+------------+---------+---------
|      0     | 0.626386| 1.52325|
+------------+---------+--------+

当我输入命令时:

dff.mean(axis=1)

我得到:

0    1.074821
dtype: float64

根据pandas的参考,axis=1代表列,我希望命令的结果是

A    0.626386
B    1.523255
dtype: float64

我的问题是:轴在熊猫中是什么意思?


当前回答

axis=1,它将给出行和,keepdims=True将保持2D维度。 希望对你有所帮助。

其他回答

轴= 0表示从上到下 轴= 1表示从左到右

sums[key] = lang_sets[key].iloc[:,1:].sum(axis=0)

给定的例子是取column == key中所有数据的和。

这些答案确实有助于解释这一点,但对于非程序员(例如,像我这样第一次在数据科学课程背景下学习Python的人)来说,它仍然不是完全直观的。我仍然发现使用术语“沿着”或“每个”wrt的行和列是令人困惑的。

对我来说更有意义的是这样说:

轴0将作用于每个COLUMN中的所有row 轴1将作用于每个ROW中的所有COLUMNS

0轴上的均值是每列中所有行的均值,1轴上的均值是每行中所有列的均值。

从根本上说,这和@zhangxaochen和@Michael的意思是一样的,只是用一种更容易让我内化的方式。

轴在编程中是形状元组中的位置。这里有一个例子:

import numpy as np

a=np.arange(120).reshape(2,3,4,5)

a.shape
Out[3]: (2, 3, 4, 5)

np.sum(a,axis=0).shape
Out[4]: (3, 4, 5)

np.sum(a,axis=1).shape
Out[5]: (2, 4, 5)

np.sum(a,axis=2).shape
Out[6]: (2, 3, 5)

np.sum(a,axis=3).shape
Out[7]: (2, 3, 4)

轴上的均值将导致该维度被移除。

参考原题,dff形状为(1,2)。使用axis=1将形状更改为(1,)。

我以前也很困惑,但我记得是这样的。

它指定将更改的数据帧的维度,或者将在其上执行操作。

让我们通过一个例子来理解这一点。 我们有一个数据框架df,它的形状是(5,10),这意味着它有5行10列。

现在,当我们使用df。mean(axis=1)时,它意味着维数1将被改变,这意味着它将有相同的行数,但不同的列数。因此得到的结果将是(5,1)的形状。

类似地,如果我们使用df.mean(axis=0),这意味着维度0将被改变,这意味着行数将被改变,但列数将保持不变,因此结果将是形状(1,10)。

试着把这个和问题中提供的例子联系起来。

axis=1,它将给出行和,keepdims=True将保持2D维度。 希望对你有所帮助。