我在一次面试中被问到这个问题。它们都是O(nlogn),但大多数人使用快速排序而不是归并排序。为什么呢?
当前回答
与归并排序不同,快速排序不使用辅助空间。而归并排序使用辅助空间O(n)。 归并排序的最坏情况时间复杂度是O(nlogn)而快速排序的最坏情况复杂度是O(n²)这发生在数组已经排序的时候。
其他回答
在c/c++领域,当不使用stl容器时,我倾向于使用快速排序,因为它是构建的 进入运行时,而归并排序没有。
所以我相信,在许多情况下,这只是阻力最小的途径。
此外,对于整个数据集不适合工作集的情况,快速排序的性能可以高得多。
快速排序是在实践中最快的排序算法,但有一些病态的情况,可以使它的表现差到O(n2)。
堆排序保证在O(n*ln(n))中运行,并且只需要有限的额外存储空间。但是有许多真实世界的测试表明堆排序比快速排序平均要慢得多。
为什么快速排序很好?
QuickSort takes N^2 in worst case and NlogN average case. The worst case occurs when data is sorted. This can be mitigated by random shuffle before sorting is started. QuickSort doesn't takes extra memory that is taken by merge sort. If the dataset is large and there are identical items, complexity of Quicksort reduces by using 3 way partition. More the no of identical items better the sort. If all items are identical, it sorts in linear time. [This is default implementation in most libraries]
快速排序总是比归并排序好吗?
不是真的。
归并排序是稳定的,但快速排序不是。所以如果你需要输出的稳定性,你可以使用归并排序。在许多实际应用中需要稳定性。 现在内存很便宜。因此,如果Mergesort使用的额外内存对您的应用程序不是至关重要的,那么使用Mergesort也没有什么害处。
注意:在java中,Arrays.sort()函数对基本数据类型使用快速排序,对对象数据类型使用归并排序。因为对象消耗内存开销,所以为归并排序增加一点开销对于性能来说可能不是什么问题。
参考:在Coursera上观看普林斯顿算法课程第三周的快速排序视频
在所有条件相同的情况下,我希望大多数人使用最方便的方法,这往往是qsort(3)。除此之外,快速排序在数组上非常快,就像归并排序是列表的常用选择一样。
我想知道的是为什么基数排序和桶排序这么少见。它们是O(n)至少在链表上是这样的它所需要的只是将键转换为序数的方法。(字符串和浮动工作得很好。)
我认为原因与计算机科学的教学方式有关。我甚至不得不向我的讲师演示算法分析,它确实有可能比O(nlog (n))更快地排序。(他证明了比较排序不能比O(nlog (n))快,这是正确的)
在其他新闻中,浮点数可以按整数排序,但之后必须将负数反转。
编辑: 实际上,这里有一种更糟糕的将浮点数作为整数排序的方法:http://www.stereopsis.com/radix.html。注意,不管你实际使用什么排序算法,比特翻转技巧都可以使用……
正如许多人所注意到的,快速排序的平均情况性能要比归并排序快。但这只适用于假设按需访问任何内存段的时间为常数的情况。
在RAM中,这种假设通常不太坏(由于缓存的存在,这种假设并不总是正确的,但也不太坏)。然而,如果你的数据结构足够大,可以存储在磁盘上,那么快速排序就会因为磁盘平均每秒进行200次随机查找而被扼杀。但是,同样的磁盘在按顺序每秒读取或写入兆字节的数据方面没有任何问题。这正是归并排序所做的。
因此,如果数据必须在磁盘上排序,你真的,真的想使用归并排序的一些变体。(通常你快速排序子列表,然后开始将它们合并到某个大小阈值以上。)
Furthermore if you have to do anything with datasets of that size, think hard about how to avoid seeks to disk. For instance this is why it is standard advice that you drop indexes before doing large data loads in databases, and then rebuild the index later. Maintaining the index during the load means constantly seeking to disk. By contrast if you drop the indexes, then the database can rebuild the index by first sorting the information to be dealt with (using a mergesort of course!) and then loading it into a BTREE datastructure for the index. (BTREEs are naturally kept in order, so you can load one from a sorted dataset with few seeks to disk.)
在许多情况下,了解如何避免磁盘寻道使我将数据处理工作花费数小时而不是数天或数周。