我在一次面试中被问到这个问题。它们都是O(nlogn),但大多数人使用快速排序而不是归并排序。为什么呢?
当前回答
答案将略微倾向于快速排序w.r.t的变化带来的DualPivotQuickSort的基本值。它在JAVA 7中用于在JAVA .util. arrays中排序
It is proved that for the Dual-Pivot Quicksort the average number of
comparisons is 2*n*ln(n), the average number of swaps is 0.8*n*ln(n),
whereas classical Quicksort algorithm has 2*n*ln(n) and 1*n*ln(n)
respectively. Full mathematical proof see in attached proof.txt
and proof_add.txt files. Theoretical results are also confirmed
by experimental counting of the operations.
您可以在这里找到JAVA7实现- http://grepcode.com/file/repository.grepcode.com/java/root/jdk/openjdk/7-b147/java/util/Arrays.java
关于DualPivotQuickSort的进一步精彩阅读- http://permalink.gmane.org/gmane.comp.java.openjdk.core-libs.devel/2628
其他回答
快速排序是一种就地排序算法,因此它更适合于数组。另一方面,归并排序需要额外的O(N)存储空间,更适合于链表。
与数组不同,在喜欢列表中,我们可以在中间插入O(1)空间和O(1)时间的项,因此归并排序中的归并操作可以在不需要任何额外空间的情况下实现。但是,为数组分配和取消分配额外空间会对归并排序的运行时间产生不利影响。归并排序也有利于链表,因为数据是按顺序访问的,没有太多的随机内存访问。
另一方面,快速排序需要大量的随机内存访问,而使用数组,我们可以直接访问内存,而不需要像链表那样进行任何遍历。同样,快速排序用于数组时具有良好的引用局部性,因为数组连续存储在内存中。
尽管这两种排序算法的平均复杂度都是O(NlogN),但通常人们在执行普通任务时使用数组进行存储,因此快速排序应该是首选算法。
编辑:我刚刚发现归并排序最差/最好/平均情况总是nlogn,但快速排序可以从n2(最坏的情况下,元素已经排序)到nlogn(平均/最佳情况下,pivot总是将数组分为两半)。
这是采访中经常被问到的一个问题,尽管归并排序在最坏情况下性能更好,但快速排序被认为比归并排序更好,特别是对于大输入。以下是快速排序更好的原因:
1-辅助空间:快速排序是一种就地排序算法。就地排序意味着执行排序不需要额外的存储空间。另一方面,归并排序需要一个临时数组来归并已排序的数组,因此它并不到位。
2-最坏情况:快速排序O(n^2)的最坏情况可以通过使用随机化快速排序来避免。通过选择正确的枢轴,可以很容易地避免这种情况。通过选择合适的枢轴元来获得平均情况下的行为,从而提高了算法的性能,达到了与归并排序一样的效率。
3-引用的局部性:快速排序特别展示了良好的缓存局部性,这使得它在许多情况下比归并排序更快,比如在虚拟内存环境中。
4-尾递归:快速排序是尾递归,而归并排序不是。尾递归函数是一种函数,其中递归调用是函数执行的最后一件事。尾递归函数被认为比非尾递归函数更好,因为尾递归可以被编译器优化。
在归并排序中,一般算法为:
对左子数组进行排序 对右子数组进行排序 合并两个已排序的子数组
在顶层,合并两个已排序的子数组涉及处理N个元素。
再往下一层,第3步的每次迭代都涉及处理N/2个元素,但您必须重复此过程两次。所以你仍然在处理2 * N/2 == N个元素。
再往下一层,你要合并4 * N/4 == N个元素,以此类推。递归堆栈中的每个深度都涉及合并相同数量的元素,涉及对该深度的所有调用。
考虑一下快速排序算法:
选择一个枢轴点 将枢轴点放置在数组中的正确位置,所有较小的元素放在左边,较大的元素放在右边 对左子数组进行排序 对右子数组排序
在顶层,你处理的是一个大小为n的数组,然后选择一个枢轴点,把它放在正确的位置,然后可以在算法的其余部分完全忽略它。
再往下一层,您将处理2个子数组,它们的组合大小为N-1(即减去之前的枢轴点)。为每个子数组选择一个枢轴点,总共有2个额外的枢轴点。
再往下一层,您将处理4个子数组,它们的组合大小为N-3,原因与上面相同。
然后N-7…然后c15…然后N-32…
递归堆栈的深度保持大致相同(logN)。使用归并排序,你总是在递归堆栈的每一层处理n个元素的归并。但是使用快速排序,你要处理的元素数量会随着你在堆栈中向下移动而减少。例如,如果你在递归堆栈中查看深度,你正在处理的元素数量是N - 2^((logN)/2)) == N -根号(N)。
声明:对于归并排序,因为每次都将数组分割为两个完全相等的块,所以递归深度正好是logN。在快速排序时,由于枢轴点不太可能恰好位于数组的中间,因此递归堆栈的深度可能略大于logN。我还没有做过数学计算,看看这个因素和上面描述的因素在算法复杂性中究竟扮演了多大的角色。
One of the reason is more philosophical. Quicksort is Top->Down philosophy. With n elements to sort, there are n! possibilities. With 2 partitions of m & n-m which are mutually exclusive, the number of possibilities go down in several orders of magnitude. m! * (n-m)! is smaller by several orders than n! alone. imagine 5! vs 3! *2!. 5! has 10 times more possibilities than 2 partitions of 2 & 3 each . and extrapolate to 1 million factorial vs 900K!*100K! vs. So instead of worrying about establishing any order within a range or a partition,just establish order at a broader level in partitions and reduce the possibilities within a partition. Any order established earlier within a range will be disturbed later if the partitions themselves are not mutually exclusive.
任何自下而上的排序方法,如归并排序或堆排序,就像工人或雇员的方法一样,人们很早就开始在微观层面进行比较。但是,一旦在它们之间发现了一个元素,这个顺序就必然会丢失。这些方法非常稳定和可预测,但要做一定量的额外工作。
Quick Sort is like Managerial approach where one is not initially concerned about any order , only about meeting a broad criterion with No regard for order. Then the partitions are narrowed until you get a sorted set. The real challenge in Quicksort is in finding a partition or criterion in the dark when you know nothing about the elements to sort. That is why we either need to spend some effort to find a median value or pick 1 at random or some arbitrary "Managerial" approach . To find a perfect median can take significant amount of effort and leads to a stupid bottom up approach again. So Quicksort says just a pick a random pivot and hope that it will be somewhere in the middle or do some work to find median of 3 , 5 or something more to find a better median but do not plan to be perfect & don't waste any time in initially ordering. That seems to do well if you are lucky or sometimes degrades to n^2 when you don't get a median but just take a chance. Any way data is random. right. So I agree more with the top ->down logical approach of quicksort & it turns out that the chance it takes about pivot selection & comparisons that it saves earlier seems to work better more times than any meticulous & thorough stable bottom ->up approach like merge sort. But
快速排序和合并排序的小增加。
它还可以依赖于排序项的类型。如果访问项、交换和比较不是简单的操作,就像比较平面内存中的整数一样,那么归并排序可能是更可取的算法。
例如,我们在远程服务器上使用网络协议对项目进行排序。
而且,在像“链表”这样的自定义容器中,也没有快速排序的好处。 1. 对链表进行归并排序,不需要额外的内存。 2. 快速排序中对元素的访问不是顺序的(在内存中)