在创建NumPy数组后,并将其保存为Django上下文变量,我在加载网页时收到以下错误:

array([   0,  239,  479,  717,  952, 1192, 1432, 1667], dtype=int64) is not JSON serializable

这是什么意思?


当前回答

这是一个不同的答案,但这可能有助于那些试图保存数据然后再次读取的人。 有一种方法比泡菜更快更容易。 我试图保存并在pickle dump中阅读它,但在阅读时有很多问题,浪费了一个小时,尽管我正在用自己的数据创建一个聊天机器人,但仍然没有找到解决方案。

Vec_x和vec_y是numpy数组:

data=[vec_x,vec_y]
hkl.dump( data, 'new_data_file.hkl' )

然后你只需读取它并执行以下操作:

data2 = hkl.load( 'new_data_file.hkl' )

其他回答

存储为JSON一个numpy。Ndarray或任何嵌套列表组合。

class NumpyEncoder(json.JSONEncoder):
    def default(self, obj):
        if isinstance(obj, np.ndarray):
            return obj.tolist()
        return json.JSONEncoder.default(self, obj)

a = np.array([[1, 2, 3], [4, 5, 6]])
print(a.shape)
json_dump = json.dumps({'a': a, 'aa': [2, (2, 3, 4), a], 'bb': [2]}, 
                       cls=NumpyEncoder)
print(json_dump)

将输出:

(2, 3)
{"a": [[1, 2, 3], [4, 5, 6]], "aa": [2, [2, 3, 4], [[1, 2, 3], [4, 5, 6]]], "bb": [2]}

从JSON中恢复:

json_load = json.loads(json_dump)
a_restored = np.asarray(json_load["a"])
print(a_restored)
print(a_restored.shape)

将输出:

[[1 2 3]
 [4 5 6]]
(2, 3)

默认情况下不支持这一点,但是您可以很容易地让它工作!如果你想要返回完全相同的数据,有几个东西你需要编码:

数据本身,您可以通过obj.tolist()获得,如@travelingbones所述。有时这可能已经足够好了。 数据类型。我觉得这在很多情况下很重要。 维度(不一定是2D),如果你假设输入确实总是一个“矩形”网格,可以从上面得到。 内存顺序(行或列为主)。这通常并不重要,但有时很重要(例如性能),所以为什么不保存所有内容呢?

此外,你的numpy数组可以是你的数据结构的一部分,例如,你有一个包含一些矩阵的列表。为此,你可以使用一个自定义编码器,基本上做上述。

这应该足以实现解决方案。或者你可以使用json-tricks,它可以做到这一点(并支持各种其他类型)(免责声明:是我做的)。

pip install json-tricks

Then

data = [
    arange(0, 10, 1, dtype=int).reshape((2, 5)),
    datetime(year=2017, month=1, day=19, hour=23, minute=00, second=00),
    1 + 2j,
    Decimal(42),
    Fraction(1, 3),
    MyTestCls(s='ub', dct={'7': 7}),  # see later
    set(range(7)),
]
# Encode with metadata to preserve types when decoding
print(dumps(data))

使用json。转储默认kwarg:

Default应该是一个函数,用于无法序列化的对象. ...或引发TypeError

在默认函数中检查对象是否来自模块numpy,如果是,则使用ndarray。对ndarray使用列表,对任何其他numpy特定类型使用.item。

import numpy as np

def default(obj):
    if type(obj).__module__ == np.__name__:
        if isinstance(obj, np.ndarray):
            return obj.tolist()
        else:
            return obj.item()
    raise TypeError('Unknown type:', type(obj))

dumped = json.dumps(data, default=default)

我有一个类似的问题,嵌套字典与一些numpy。ndarray在里面。

def jsonify(data):
    json_data = dict()
    for key, value in data.iteritems():
        if isinstance(value, list): # for lists
            value = [ jsonify(item) if isinstance(item, dict) else item for item in value ]
        if isinstance(value, dict): # for nested lists
            value = jsonify(value)
        if isinstance(key, int): # if key is integer: > to string
            key = str(key)
        if type(value).__module__=='numpy': # if value is numpy.*: > to python list
            value = value.tolist()
        json_data[key] = value
    return json_data

下面是一个为我工作的实现,并删除了所有的nan(假设这些是简单的对象(list或dict)):

from numpy import isnan

def remove_nans(my_obj, val=None):
    if isinstance(my_obj, list):
        for i, item in enumerate(my_obj):
            if isinstance(item, list) or isinstance(item, dict):
                my_obj[i] = remove_nans(my_obj[i], val=val)

            else:
                try:
                    if isnan(item):
                        my_obj[i] = val
                except Exception:
                    pass

    elif isinstance(my_obj, dict):
        for key, item in my_obj.iteritems():
            if isinstance(item, list) or isinstance(item, dict):
                my_obj[key] = remove_nans(my_obj[key], val=val)

            else:
                try:
                    if isnan(item):
                        my_obj[key] = val
                except Exception:
                    pass

    return my_obj