我理解DFS和BFS之间的区别,但是我想知道在选择DFS和BFS时应该考虑哪些因素。

比如对于非常深的树避免DFS,等等。


当前回答

当树的深度可以变化时,宽度优先搜索通常是最好的方法,并且您只需要搜索树的一部分来寻找解决方案。例如,寻找从起始值到最终值的最短路径是使用BFS的好地方。

深度优先搜索通常用于需要搜索整个树的情况。它比BFS更容易实现(使用递归),并且需要更少的状态:BFS需要存储整个“边界”,DFS只需要存储当前元素的父节点列表。

其他回答

DFS比BFS更节省空间,但可能会深入到不必要的深度。

它们的名字揭示了:如果有很大的广度(即大的分支因子),但深度非常有限(例如有限的“移动”数量),那么DFS可能比BFS更受欢迎。


关于国际发展基金

应该提到的是,有一个不太为人所知的变体,它结合了DFS的空间效率,但(累积)BFS的水平顺序访问,是迭代深化深度优先搜索。该算法对一些节点进行了重访,但只贡献了一个常数因子的渐近差分。

这是一个很好的例子,说明BFS在某些情况下优于DFS。https://leetcode.com/problems/01-matrix/

当正确实现时,两个解决方案都应该访问比当前单元格+1距离更远的单元格。 但DFS效率低,重复访问同一单元,导致复杂度为O(n*n)。

例如,

1,1,1,1,1,1,1,1, 
1,1,1,1,1,1,1,1, 
1,1,1,1,1,1,1,1, 
0,0,0,0,0,0,0,0,

当树的宽度非常大,深度很低时,使用DFS作为递归堆栈不会溢出。当宽度很低而深度很大时使用BFS遍历树。

深度优先搜索

深度优先搜索通常用于模拟游戏(以及现实世界中的类似游戏场景)。在典型的游戏中,你可以从几种可能的行动中选择一种。每个选择都会引出更多的选择,每个选择又会引出更多的选择,如此循环往复,形成一个不断扩大的可能性树形图。

例如,在国际象棋和井字游戏中,当你决定走哪一步时,你可以在脑海中想象一步,然后是对手可能的反应,然后是你的反应,等等。你可以通过观察哪一步会带来最好的结果来决定做什么。

在游戏树中只有一些路径能够引导你获胜。有些会导致你的对手获胜,当你到达这样的结局时,你必须后退或回溯到前一个节点,并尝试不同的路径。通过这种方式,您可以探索树,直到找到一条具有成功结论的路径。然后沿着这条路迈出第一步。


广度优先搜索

宽度优先搜索有一个有趣的特性:它首先找到距离起点一条边的所有顶点,然后是距离起点两条边的所有顶点,依此类推。如果你试图找到从起始顶点到给定顶点的最短路径,这是很有用的。你开始一个BFS,当你找到指定的顶点时,你知道你到目前为止跟踪的路径是到该节点的最短路径。如果有更短的路径,BFS早就找到了。

宽度优先搜索可用于在BitTorrent等对等网络中查找相邻节点,GPS系统用于查找附近位置,社交网站用于查找指定距离内的人等等。

BFS的一个重要优势是,它可以用于寻找未加权图中任意两个节点之间的最短路径。 然而,我们不能用DFS来做同样的事情。