我正在寻找一种优雅的方式来获得数据使用属性访问字典与一些嵌套的字典和列表(即javascript风格的对象语法)。
例如:
>>> d = {'a': 1, 'b': {'c': 2}, 'd': ["hi", {'foo': "bar"}]}
应该以这样的方式访问:
>>> x = dict2obj(d)
>>> x.a
1
>>> x.b.c
2
>>> x.d[1].foo
bar
我想,如果没有递归,这是不可能的,但是有什么更好的方法来获得字典的对象样式呢?
我正在寻找一种优雅的方式来获得数据使用属性访问字典与一些嵌套的字典和列表(即javascript风格的对象语法)。
例如:
>>> d = {'a': 1, 'b': {'c': 2}, 'd': ["hi", {'foo': "bar"}]}
应该以这样的方式访问:
>>> x = dict2obj(d)
>>> x.a
1
>>> x.b.c
2
>>> x.d[1].foo
bar
我想,如果没有递归,这是不可能的,但是有什么更好的方法来获得字典的对象样式呢?
当前回答
我知道这里已经有很多答案了,我迟到了,但这个方法将递归和“就地”将字典转换为类对象结构……适用于3.x.x
def dictToObject(d):
for k,v in d.items():
if isinstance(v, dict):
d[k] = dictToObject(v)
return namedtuple('object', d.keys())(*d.values())
# Dictionary created from JSON file
d = {
'primaryKey': 'id',
'metadata':
{
'rows': 0,
'lastID': 0
},
'columns':
{
'col2': {
'dataType': 'string',
'name': 'addressLine1'
},
'col1': {
'datatype': 'string',
'name': 'postcode'
},
'col3': {
'dataType': 'string',
'name': 'addressLine2'
},
'col0': {
'datatype': 'integer',
'name': 'id'
},
'col4': {
'dataType': 'string',
'name': 'contactNumber'
}
},
'secondaryKeys': {}
}
d1 = dictToObject(d)
d1.columns.col1 # == object(datatype='string', name='postcode')
d1.metadata.rows # == 0
其他回答
将字典转换为对象
from types import SimpleNamespace
def dict2obj(data):
"""将字典对象转换为可访问的对象属性"""
if not isinstance(data, dict):
raise ValueError('data must be dict object.')
def _d2o(d):
_d = {}
for key, item in d.items():
if isinstance(item, dict):
_d[key] = _d2o(item)
else:
_d[key] = item
return SimpleNamespace(**_d)
return _d2o(data)
参考答案
下面是执行SilentGhost最初建议的另一种方法:
def dict2obj(d):
if isinstance(d, dict):
n = {}
for item in d:
if isinstance(d[item], dict):
n[item] = dict2obj(d[item])
elif isinstance(d[item], (list, tuple)):
n[item] = [dict2obj(elem) for elem in d[item]]
else:
n[item] = d[item]
return type('obj_from_dict', (object,), n)
else:
return d
class Struct(dict):
def __getattr__(self, name):
try:
return self[name]
except KeyError:
raise AttributeError(name)
def __setattr__(self, name, value):
self[name] = value
def copy(self):
return Struct(dict.copy(self))
用法:
points = Struct(x=1, y=2)
# Changing
points['x'] = 2
points.y = 1
# Accessing
points['x'], points.x, points.get('x') # 2 2 2
points['y'], points.y, points.get('y') # 1 1 1
# Accessing inexistent keys/attrs
points['z'] # KeyError: z
points.z # AttributeError: z
# Copying
points_copy = points.copy()
points.x = 2
points_copy.x # 1
我知道这里已经有很多答案了,我迟到了,但这个方法将递归和“就地”将字典转换为类对象结构……适用于3.x.x
def dictToObject(d):
for k,v in d.items():
if isinstance(v, dict):
d[k] = dictToObject(v)
return namedtuple('object', d.keys())(*d.values())
# Dictionary created from JSON file
d = {
'primaryKey': 'id',
'metadata':
{
'rows': 0,
'lastID': 0
},
'columns':
{
'col2': {
'dataType': 'string',
'name': 'addressLine1'
},
'col1': {
'datatype': 'string',
'name': 'postcode'
},
'col3': {
'dataType': 'string',
'name': 'addressLine2'
},
'col0': {
'datatype': 'integer',
'name': 'id'
},
'col4': {
'dataType': 'string',
'name': 'contactNumber'
}
},
'secondaryKeys': {}
}
d1 = dictToObject(d)
d1.columns.col1 # == object(datatype='string', name='postcode')
d1.metadata.rows # == 0
我不满意那些被标记和点赞的答案,所以这里有一个简单而通用的解决方案,用于将json风格的嵌套数据结构(由字典和列表组成)转换为普通对象的层次结构:
# tested in: Python 3.8
from collections import abc
from typings import Any, Iterable, Mapping, Union
class DataObject:
def __repr__(self):
return str({k: v for k, v in vars(self).items()})
def data_to_object(data: Union[Mapping[str, Any], Iterable]) -> object:
"""
Example
-------
>>> data = {
... "name": "Bob Howard",
... "positions": [{"department": "ER", "manager_id": 13}],
... }
... data_to_object(data).positions[0].manager_id
13
"""
if isinstance(data, abc.Mapping):
r = DataObject()
for k, v in data.items():
if type(v) is dict or type(v) is list:
setattr(r, k, data_to_object(v))
else:
setattr(r, k, v)
return r
elif isinstance(data, abc.Iterable):
return [data_to_object(e) for e in data]
else:
return data