比较两个双精度浮点数或两个浮点数最有效的方法是什么?

简单地这样做是不正确的:

bool CompareDoubles1 (double A, double B)
{
   return A == B;
}

比如:

bool CompareDoubles2 (double A, double B) 
{
   diff = A - B;
   return (diff < EPSILON) && (-diff < EPSILON);
}

似乎是浪费加工。

有人知道更聪明的浮点比较器吗?


当前回答

我的课程是基于之前发布的答案。非常类似于谷歌的代码,但我使用了一个偏差,将所有NaN值推到0xFF000000以上。这样可以更快地检查NaN。

这段代码是为了演示概念,而不是通用的解决方案。谷歌的代码已经展示了如何计算所有平台特定的值,我不想复制所有这些。我对这段代码做了有限的测试。

typedef unsigned int   U32;
//  Float           Memory          Bias (unsigned)
//  -----           ------          ---------------
//   NaN            0xFFFFFFFF      0xFF800001
//   NaN            0xFF800001      0xFFFFFFFF
//  -Infinity       0xFF800000      0x00000000 ---
//  -3.40282e+038   0xFF7FFFFF      0x00000001    |
//  -1.40130e-045   0x80000001      0x7F7FFFFF    |
//  -0.0            0x80000000      0x7F800000    |--- Valid <= 0xFF000000.
//   0.0            0x00000000      0x7F800000    |    NaN > 0xFF000000
//   1.40130e-045   0x00000001      0x7F800001    |
//   3.40282e+038   0x7F7FFFFF      0xFEFFFFFF    |
//   Infinity       0x7F800000      0xFF000000 ---
//   NaN            0x7F800001      0xFF000001
//   NaN            0x7FFFFFFF      0xFF7FFFFF
//
//   Either value of NaN returns false.
//   -Infinity and +Infinity are not "close".
//   -0 and +0 are equal.
//
class CompareFloat{
public:
    union{
        float     m_f32;
        U32       m_u32;
    };
    static bool   CompareFloat::IsClose( float A, float B, U32 unitsDelta = 4 )
                  {
                      U32    a = CompareFloat::GetBiased( A );
                      U32    b = CompareFloat::GetBiased( B );

                      if ( (a > 0xFF000000) || (b > 0xFF000000) )
                      {
                          return( false );
                      }
                      return( (static_cast<U32>(abs( a - b ))) < unitsDelta );
                  }
    protected:
    static U32    CompareFloat::GetBiased( float f )
                  {
                      U32    r = ((CompareFloat*)&f)->m_u32;

                      if ( r & 0x80000000 )
                      {
                          return( ~r - 0x007FFFFF );
                      }
                      return( r + 0x7F800000 );
                  }
};

其他回答

在https://en.cppreference.com/w/cpp/types/numeric_limits/epsilon上找到了另一个有趣的实现

#include <cmath>
#include <limits>
#include <iomanip>
#include <iostream>
#include <type_traits>
#include <algorithm>



template<class T>
typename std::enable_if<!std::numeric_limits<T>::is_integer, bool>::type
    almost_equal(T x, T y, int ulp)
{
    // the machine epsilon has to be scaled to the magnitude of the values used
    // and multiplied by the desired precision in ULPs (units in the last place)
    return std::fabs(x-y) <= std::numeric_limits<T>::epsilon() * std::fabs(x+y) * ulp
        // unless the result is subnormal
        || std::fabs(x-y) < std::numeric_limits<T>::min();
}

int main()
{
    double d1 = 0.2;
    double d2 = 1 / std::sqrt(5) / std::sqrt(5);
    std::cout << std::fixed << std::setprecision(20) 
        << "d1=" << d1 << "\nd2=" << d2 << '\n';

    if(d1 == d2)
        std::cout << "d1 == d2\n";
    else
        std::cout << "d1 != d2\n";

    if(almost_equal(d1, d2, 2))
        std::cout << "d1 almost equals d2\n";
    else
        std::cout << "d1 does not almost equal d2\n";
}

General-purpose comparison of floating-point numbers is generally meaningless. How to compare really depends on a problem at hand. In many problems, numbers are sufficiently discretized to allow comparing them within a given tolerance. Unfortunately, there are just as many problems, where such trick doesn't really work. For one example, consider working with a Heaviside (step) function of a number in question (digital stock options come to mind) when your observations are very close to the barrier. Performing tolerance-based comparison wouldn't do much good, as it would effectively shift the issue from the original barrier to two new ones. Again, there is no general-purpose solution for such problems and the particular solution might require going as far as changing the numerical method in order to achieve stability.

我对任何涉及浮点减法的答案都非常谨慎(例如,fabs(a-b) < epsilon)。首先,浮点数在更大的量级上变得更稀疏,在足够大的量级上,当间隔大于时,您可能只需要做a == b。其次,减去两个非常接近的浮点数(因为您正在寻找接近相等的浮点数)正是您得到灾难性抵消的方式。

虽然不能移植,但我认为grom的答案在避免这些问题方面做得最好。

我使用以下函数进行浮点数比较:

bool approximatelyEqual(double a, double b)
{
  return fabs(a - b) <= ((fabs(a) < fabs(b) ? fabs(b) : fabs(a)) * std::numeric_limits<double>::epsilon());
}

在数值软件中,确实有这样的情况,你需要检查两个浮点数是否完全相等。我就一个类似的问题发表了这篇文章

https://stackoverflow.com/a/10973098/1447411

所以你不能说“CompareDoubles1”是错误的。