我试图初始化一个data。frame,没有任何行。基本上,我希望为每个列指定数据类型并命名它们,但结果不创建任何行。

到目前为止,我能做的最好的事情是:

df <- data.frame(Date=as.Date("01/01/2000", format="%m/%d/%Y"), 
                 File="", User="", stringsAsFactors=FALSE)
df <- df[-1,]

它创建了一个data.frame,包含我想要的所有数据类型和列名的单行,但也创建了一个无用的行,然后需要删除。

还有更好的办法吗?


当前回答

只是声明

table = data.frame()

当您尝试rbind第一行时,它将创建列

其他回答

如果你已经有了一个dataframe,你可以从一个dataframe中提取元数据(列名和类型)(例如,如果你正在控制一个BUG,它只会被某些输入触发,并且需要一个空的dummy dataframe):

colums_and_types <- sapply(df, class)

# prints: "c('col1', 'col2')"
print(dput(as.character(names(colums_and_types))))

# prints: "c('integer', 'factor')"
dput(as.character(as.vector(colums_and_types)))

然后使用read。表创建空数据框架

read.table(text = "",
   colClasses = c('integer', 'factor'),
   col.names = c('col1', 'col2'))

通过使用数据。表中我们可以为每一列指定数据类型。

library(data.table)    
data=data.table(a=numeric(), b=numeric(), c=numeric())

最有效的方法是使用structure创建一个类为"data.frame"的列表:

structure(list(Date = as.Date(character()), File = character(), User = character()), 
          class = "data.frame")
# [1] Date File User
# <0 rows> (or 0-length row.names)

为了与目前公认的答案进行比较,这里有一个简单的基准:

s <- function() structure(list(Date = as.Date(character()), 
                               File = character(), 
                               User = character()), 
                          class = "data.frame")
d <- function() data.frame(Date = as.Date(character()),
                           File = character(), 
                           User = character(), 
                           stringsAsFactors = FALSE) 
library("microbenchmark")
microbenchmark(s(), d())
# Unit: microseconds
#  expr     min       lq     mean   median      uq      max neval
#   s()  58.503  66.5860  90.7682  82.1735 101.803  469.560   100
#   d() 370.644 382.5755 523.3397 420.1025 604.654 1565.711   100

如果你不介意不显式地指定数据类型,你可以这样做:

headers<-c("Date","File","User")
df <- as.data.frame(matrix(,ncol=3,nrow=0))
names(df)<-headers

#then bind incoming data frame with col types to set data types
df<-rbind(df, new_df)

我保持这个函数方便,每当我需要它,并改变列名和类以适应用例:

make_df <- function() { data.frame(name=character(),
                     profile=character(),
                     sector=character(),
                     type=character(),
                     year_range=character(),
                     link=character(),
                     stringsAsFactors = F)
}

make_df()
[1] name       profile    sector     type       year_range link      
<0 rows> (or 0-length row.names)