我有经纬度,我想从数据库中提取记录,它有最近的经纬度,如果这个距离比指定的长,就不检索它。

表结构:

id
latitude
longitude
place name
city
country
state
zip
sealevel

当前回答

下面是我用PHP实现的完整解决方案。

该解决方案使用http://www.scribd.com/doc/2569355/Geo-Distance-Search-with-MySQL中给出的Haversine公式。

值得注意的是,哈弗辛公式在极点处有弱点。这个答案展示了如何实现vincenty大圆距离公式来解决这个问题,但是我选择只使用Haversine,因为它足够适合我的目的。

我将纬度存储为DECIMAL(10,8),经度存储为DECIMAL(11,8)。希望这能有所帮助!

showClosest.php

<?PHP
/**
 * Use the Haversine Formula to display the 100 closest matches to $origLat, $origLon
 * Only search the MySQL table $tableName for matches within a 10 mile ($dist) radius.
 */
include("./assets/db/db.php"); // Include database connection function
$db = new database(); // Initiate a new MySQL connection
$tableName = "db.table";
$origLat = 42.1365;
$origLon = -71.7559;
$dist = 10; // This is the maximum distance (in miles) away from $origLat, $origLon in which to search
$query = "SELECT name, latitude, longitude, 3956 * 2 * 
          ASIN(SQRT( POWER(SIN(($origLat - latitude)*pi()/180/2),2)
          +COS($origLat*pi()/180 )*COS(latitude*pi()/180)
          *POWER(SIN(($origLon-longitude)*pi()/180/2),2))) 
          as distance FROM $tableName WHERE 
          longitude between ($origLon-$dist/cos(radians($origLat))*69) 
          and ($origLon+$dist/cos(radians($origLat))*69) 
          and latitude between ($origLat-($dist/69)) 
          and ($origLat+($dist/69)) 
          having distance < $dist ORDER BY distance limit 100"; 
$result = mysql_query($query) or die(mysql_error());
while($row = mysql_fetch_assoc($result)) {
    echo $row['name']." > ".$row['distance']."<BR>";
}
mysql_close($db);
?>

/资产/ db / db。php

<?PHP
/**
 * Class to initiate a new MySQL connection based on $dbInfo settings found in dbSettings.php
 *
 * @example $db = new database(); // Initiate a new database connection
 * @example mysql_close($db); // close the connection
 */
class database{
    protected $databaseLink;
    function __construct(){
        include "dbSettings.php";
        $this->database = $dbInfo['host'];
        $this->mysql_user = $dbInfo['user'];
        $this->mysql_pass = $dbInfo['pass'];
        $this->openConnection();
        return $this->get_link();
    }
    function openConnection(){
    $this->databaseLink = mysql_connect($this->database, $this->mysql_user, $this->mysql_pass);
    }

    function get_link(){
    return $this->databaseLink;
    }
}
?>

资产/ db - dbSettings。php

<?php
$dbInfo = array(
    'host'      => "localhost",
    'user'      => "root",
    'pass'      => "password"
);
?>

根据上面“使用MySQL进行地理距离搜索”文章的建议,可以通过使用MySQL存储过程来提高性能。

我有一个约17,000个位置的数据库,查询执行时间为0.054秒。

其他回答

简单的一个;)

SELECT * FROM `WAYPOINTS` W ORDER BY
ABS(ABS(W.`LATITUDE`-53.63) +
ABS(W.`LONGITUDE`-9.9)) ASC LIMIT 30;

把坐标换成你需要的坐标。这些值必须存储为double类型。这是一个工作中的MySQL 5。x的例子。

干杯

你要找的是哈弗辛公式。看这里。

还有其他的,但这是最常被引用的。

如果您正在寻找更健壮的东西,则可能需要考虑数据库的GIS功能。它们能够做一些很酷的事情,比如告诉你一个点(城市)是否出现在给定的多边形(区域、国家、大陆)中。

以防你像我一样懒,这里有一个解决方案,由这个和其他关于SO的答案合并而成。

set @orig_lat=37.46; 
set @orig_long=-122.25; 
set @bounding_distance=1;

SELECT
*
,((ACOS(SIN(@orig_lat * PI() / 180) * SIN(`lat` * PI() / 180) + COS(@orig_lat * PI() / 180) * COS(`lat` * PI() / 180) * COS((@orig_long - `long`) * PI() / 180)) * 180 / PI()) * 60 * 1.1515) AS `distance` 
FROM `cities` 
WHERE
(
  `lat` BETWEEN (@orig_lat - @bounding_distance) AND (@orig_lat + @bounding_distance)
  AND `long` BETWEEN (@orig_long - @bounding_distance) AND (@orig_long + @bounding_distance)
)
ORDER BY `distance` ASC
limit 25;

下面是我用PHP实现的完整解决方案。

该解决方案使用http://www.scribd.com/doc/2569355/Geo-Distance-Search-with-MySQL中给出的Haversine公式。

值得注意的是,哈弗辛公式在极点处有弱点。这个答案展示了如何实现vincenty大圆距离公式来解决这个问题,但是我选择只使用Haversine,因为它足够适合我的目的。

我将纬度存储为DECIMAL(10,8),经度存储为DECIMAL(11,8)。希望这能有所帮助!

showClosest.php

<?PHP
/**
 * Use the Haversine Formula to display the 100 closest matches to $origLat, $origLon
 * Only search the MySQL table $tableName for matches within a 10 mile ($dist) radius.
 */
include("./assets/db/db.php"); // Include database connection function
$db = new database(); // Initiate a new MySQL connection
$tableName = "db.table";
$origLat = 42.1365;
$origLon = -71.7559;
$dist = 10; // This is the maximum distance (in miles) away from $origLat, $origLon in which to search
$query = "SELECT name, latitude, longitude, 3956 * 2 * 
          ASIN(SQRT( POWER(SIN(($origLat - latitude)*pi()/180/2),2)
          +COS($origLat*pi()/180 )*COS(latitude*pi()/180)
          *POWER(SIN(($origLon-longitude)*pi()/180/2),2))) 
          as distance FROM $tableName WHERE 
          longitude between ($origLon-$dist/cos(radians($origLat))*69) 
          and ($origLon+$dist/cos(radians($origLat))*69) 
          and latitude between ($origLat-($dist/69)) 
          and ($origLat+($dist/69)) 
          having distance < $dist ORDER BY distance limit 100"; 
$result = mysql_query($query) or die(mysql_error());
while($row = mysql_fetch_assoc($result)) {
    echo $row['name']." > ".$row['distance']."<BR>";
}
mysql_close($db);
?>

/资产/ db / db。php

<?PHP
/**
 * Class to initiate a new MySQL connection based on $dbInfo settings found in dbSettings.php
 *
 * @example $db = new database(); // Initiate a new database connection
 * @example mysql_close($db); // close the connection
 */
class database{
    protected $databaseLink;
    function __construct(){
        include "dbSettings.php";
        $this->database = $dbInfo['host'];
        $this->mysql_user = $dbInfo['user'];
        $this->mysql_pass = $dbInfo['pass'];
        $this->openConnection();
        return $this->get_link();
    }
    function openConnection(){
    $this->databaseLink = mysql_connect($this->database, $this->mysql_user, $this->mysql_pass);
    }

    function get_link(){
    return $this->databaseLink;
    }
}
?>

资产/ db - dbSettings。php

<?php
$dbInfo = array(
    'host'      => "localhost",
    'user'      => "root",
    'pass'      => "password"
);
?>

根据上面“使用MySQL进行地理距离搜索”文章的建议,可以通过使用MySQL存储过程来提高性能。

我有一个约17,000个位置的数据库,查询执行时间为0.054秒。

查找离我最近的用户:

距离(米)

根据文森特提的公式

i有用户表:

+----+-----------------------+---------+--------------+---------------+
| id | email                 | name    | location_lat | location_long |
+----+-----------------------+---------+--------------+---------------+
| 13 | xxxxxx@xxxxxxxxxx.com | Isaac   | 17.2675625   | -97.6802361   |
| 14 | xxxx@xxxxxxx.com.mx   | Monse   | 19.392702    | -99.172596    |
+----+-----------------------+---------+--------------+---------------+

sql:

-- my location:  lat   19.391124   -99.165660
SELECT 
(ATAN(
    SQRT(
        POW(COS(RADIANS(users.location_lat)) * SIN(RADIANS(users.location_long) - RADIANS(-99.165660)), 2) +
        POW(COS(RADIANS(19.391124)) * SIN(RADIANS(users.location_lat)) - 
       SIN(RADIANS(19.391124)) * cos(RADIANS(users.location_lat)) * cos(RADIANS(users.location_long) - RADIANS(-99.165660)), 2)
    )
    ,
    SIN(RADIANS(19.391124)) * 
    SIN(RADIANS(users.location_lat)) + 
    COS(RADIANS(19.391124)) * 
    COS(RADIANS(users.location_lat)) * 
    COS(RADIANS(users.location_long) - RADIANS(-99.165660))
 ) * 6371000) as distance,
users.id
FROM users
ORDER BY distance ASC

地球半径:6371000(单位:米)