我如何在Python中制作两个装饰器来完成以下操作?
@make_bold
@make_italic
def say():
return "Hello"
调用say()应返回:
"<b><i>Hello</i></b>"
我如何在Python中制作两个装饰器来完成以下操作?
@make_bold
@make_italic
def say():
return "Hello"
调用say()应返回:
"<b><i>Hello</i></b>"
当前回答
Paolo Bergan蒂诺的答案具有只使用stdlib的巨大优势,适用于这个简单的示例,其中既没有修饰器参数,也没有修饰函数参数。
然而,如果您想处理更一般的情况,它有三个主要限制:
正如在几个答案中已经指出的,您不能轻易地修改代码以添加可选的修饰符参数。例如,创建makestyle(style='bold')装饰器非常简单。此外,使用@functools.wraps创建的包装器不保留签名,因此如果提供了错误的参数,它们将开始执行,并且可能引发与通常的TypeError不同的错误。最后,在使用@functools.wraps创建的包装器中,很难根据其名称访问参数。事实上,参数可以出现在*args、**kwargs中,也可以根本不出现(如果是可选的)。
我写了decopatch来解决第一个问题,写了makefun.wraps来解决另外两个问题。注意,makefun利用了与著名的decorator lib相同的技巧。
这是如何创建带有参数的装饰器,返回真正的签名保护包装器:
from decopatch import function_decorator, DECORATED
from makefun import wraps
@function_decorator
def makestyle(st='b', fn=DECORATED):
open_tag = "<%s>" % st
close_tag = "</%s>" % st
@wraps(fn)
def wrapped(*args, **kwargs):
return open_tag + fn(*args, **kwargs) + close_tag
return wrapped
decopatch为您提供了其他两种开发样式,根据您的喜好,隐藏或显示各种python概念。最紧凑的样式如下:
from decopatch import function_decorator, WRAPPED, F_ARGS, F_KWARGS
@function_decorator
def makestyle(st='b', fn=WRAPPED, f_args=F_ARGS, f_kwargs=F_KWARGS):
open_tag = "<%s>" % st
close_tag = "</%s>" % st
return open_tag + fn(*f_args, **f_kwargs) + close_tag
在这两种情况下,您都可以检查装饰器是否按预期工作:
@makestyle
@makestyle('i')
def hello(who):
return "hello %s" % who
assert hello('world') == '<b><i>hello world</i></b>'
有关详细信息,请参阅文档。
其他回答
或者,您可以编写一个工厂函数,该函数返回一个装饰器,该装饰器将装饰函数的返回值包装在传递给工厂函数的标记中。例如:
from functools import wraps
def wrap_in_tag(tag):
def factory(func):
@wraps(func)
def decorator():
return '<%(tag)s>%(rv)s</%(tag)s>' % (
{'tag': tag, 'rv': func()})
return decorator
return factory
这使您能够编写:
@wrap_in_tag('b')
@wrap_in_tag('i')
def say():
return 'hello'
or
makebold = wrap_in_tag('b')
makeitalic = wrap_in_tag('i')
@makebold
@makeitalic
def say():
return 'hello'
就我个人而言,我会用不同的方式来编写装饰器:
from functools import wraps
def wrap_in_tag(tag):
def factory(func):
@wraps(func)
def decorator(val):
return func('<%(tag)s>%(val)s</%(tag)s>' %
{'tag': tag, 'val': val})
return decorator
return factory
这将产生:
@wrap_in_tag('b')
@wrap_in_tag('i')
def say(val):
return val
say('hello')
不要忘了decorator语法是一种简写的构造:
say = wrap_in_tag('b')(wrap_in_tag('i')(say)))
做同样事情的另一种方式:
class bol(object):
def __init__(self, f):
self.f = f
def __call__(self):
return "<b>{}</b>".format(self.f())
class ita(object):
def __init__(self, f):
self.f = f
def __call__(self):
return "<i>{}</i>".format(self.f())
@bol
@ita
def sayhi():
return 'hi'
或者,更灵活地说:
class sty(object):
def __init__(self, tag):
self.tag = tag
def __call__(self, f):
def newf():
return "<{tag}>{res}</{tag}>".format(res=f(), tag=self.tag)
return newf
@sty('b')
@sty('i')
def sayhi():
return 'hi'
装饰器接受函数定义并创建一个新函数,该函数执行该函数并转换结果。
@deco
def do():
...
相当于:
do = deco(do)
例子:
def deco(func):
def inner(letter):
return func(letter).upper() #upper
return inner
This
@deco
def do(number):
return chr(number) # number to letter
相当于这个
def do2(number):
return chr(number)
do2 = deco(do2)
65<=>“a”
print(do(65))
print(do2(65))
>>> B
>>> B
要理解decorator,需要注意的是,decorator创建了一个新的函数do,它在内部执行函数并转换结果。
查看文档以了解装饰器是如何工作的。以下是您的要求:
from functools import wraps
def makebold(fn):
@wraps(fn)
def wrapper(*args, **kwargs):
return "<b>" + fn(*args, **kwargs) + "</b>"
return wrapper
def makeitalic(fn):
@wraps(fn)
def wrapper(*args, **kwargs):
return "<i>" + fn(*args, **kwargs) + "</i>"
return wrapper
@makebold
@makeitalic
def hello():
return "hello world"
@makebold
@makeitalic
def log(s):
return s
print hello() # returns "<b><i>hello world</i></b>"
print hello.__name__ # with functools.wraps() this returns "hello"
print log('hello') # returns "<b><i>hello</i></b>"
这个答案早就有了答案,但我想我会分享我的Decorator类,这使编写新的Decorator变得简单而紧凑。
from abc import ABCMeta, abstractclassmethod
class Decorator(metaclass=ABCMeta):
""" Acts as a base class for all decorators """
def __init__(self):
self.method = None
def __call__(self, method):
self.method = method
return self.call
@abstractclassmethod
def call(self, *args, **kwargs):
return self.method(*args, **kwargs)
首先,我认为这使装饰器的行为非常清晰,但也使定义新的装饰器变得非常简洁。对于上面列出的示例,您可以将其解为:
class MakeBold(Decorator):
def call():
return "<b>" + self.method() + "</b>"
class MakeItalic(Decorator):
def call():
return "<i>" + self.method() + "</i>"
@MakeBold()
@MakeItalic()
def say():
return "Hello"
您也可以使用它来执行更复杂的任务,例如,一个装饰器,它会自动将函数递归地应用于迭代器中的所有参数:
class ApplyRecursive(Decorator):
def __init__(self, *types):
super().__init__()
if not len(types):
types = (dict, list, tuple, set)
self._types = types
def call(self, arg):
if dict in self._types and isinstance(arg, dict):
return {key: self.call(value) for key, value in arg.items()}
if set in self._types and isinstance(arg, set):
return set(self.call(value) for value in arg)
if tuple in self._types and isinstance(arg, tuple):
return tuple(self.call(value) for value in arg)
if list in self._types and isinstance(arg, list):
return list(self.call(value) for value in arg)
return self.method(arg)
@ApplyRecursive(tuple, set, dict)
def double(arg):
return 2*arg
print(double(1))
print(double({'a': 1, 'b': 2}))
print(double({1, 2, 3}))
print(double((1, 2, 3, 4)))
print(double([1, 2, 3, 4, 5]))
哪些打印:
2
{'a': 2, 'b': 4}
{2, 4, 6}
(2, 4, 6, 8)
[1, 2, 3, 4, 5, 1, 2, 3, 4, 5]
注意,这个示例没有在decorator的实例化中包含列表类型,因此在最终的print语句中,该方法应用于列表本身,而不是列表的元素。