Python中的“iterable”、“iterator”和“iteration”是什么?它们是如何定义的?
当前回答
迭代对象有一个__iter__方法,每次都会实例化一个新的迭代器。 迭代器实现了一个__next__方法返回单个项,以及一个__iter__方法返回self。 因此,迭代器也是可迭代的,但可迭代的不是迭代器。
卢西亚诺·拉马略,流利的蟒蛇。
其他回答
在处理可迭代对象和迭代器之前,决定可迭代对象和迭代器的主要因素是序列
序列:序列是数据的集合
Iterable: Iterable是支持__iter__方法的序列类型对象。
Iter方法:Iter方法以序列为输入,创建一个对象,称为迭代器
迭代器:迭代器是调用next方法和横向遍历序列的对象。在调用下一个方法时,它返回当前遍历的对象。
例子:
x=[1,2,3,4]
X是一个由数据集合组成的序列
y=iter(x)
在调用iter(x)时,只有当x对象有iter方法时,它才会返回一个迭代器,否则会引发异常。如果返回迭代器,则y的赋值如下:
y=[1,2,3,4]
因为y是一个迭代器,所以它支持next()方法
在调用next方法时,它逐个返回列表中的各个元素。
返回序列的最后一个元素后,如果再次调用下一个方法,将引发StopIteration错误
例子:
>>> y.next()
1
>>> y.next()
2
>>> y.next()
3
>>> y.next()
4
>>> y.next()
StopIteration
iterable是一个具有iter()方法的对象,该方法返回一个迭代器。这是可以循环的。 示例:列表是可迭代的,因为我们可以遍历列表BUT不是迭代器 迭代器是一个可以从中获取迭代器的对象。它是一个具有状态的对象,以便在迭代过程中记住它所处的位置
要查看对象是否有iter()方法,可以使用下面的函数。
ls = ['hello','bye']
print(dir(ls))
输出
['__add__', '__class__', '__contains__', '__delattr__', '__delitem__', '__dir__', '__doc__', '__eq__', '__format__', '__ge__', '__getattribute__', '__getitem__', '__gt__', '__hash__', '__iadd__', '__imul__', '__init__', '__init_subclass__', '__iter__', '__le__', '__len__', '__lt__', '__mul__', '__ne__', '__new__', '__reduce__', '__reduce_ex__', '__repr__', '__reversed__', '__rmul__', '__setattr__', '__setitem__', '__sizeof__', '__str__', '__subclasshook__', 'append', 'clear', 'copy', 'count', 'extend', 'index', 'insert', 'pop', 'remove', 'reverse', 'sort']
正如你所看到的有iter(),这意味着它是一个可迭代对象,但不包含next()方法,这是迭代器对象的一个特征
无论何时在Python中使用for循环或map或列表推导式,都会自动调用next方法以从迭代中获取每一项
迭代器是实现iter和next方法的对象。如果定义了这些方法,则可以使用for循环或推导式。
class Squares:
def __init__(self, length):
self.length = length
self.i = 0
def __iter__(self):
print('calling __iter__') # this will be called first and only once
return self
def __next__(self):
print('calling __next__') # this will be called for each iteration
if self.i >= self.length:
raise StopIteration
else:
result = self.i ** 2
self.i += 1
return result
迭代器会耗尽。这意味着在你遍历项目之后,你不能重复,你必须创建一个新对象。假设你有一个类,它包含cities属性,你想要遍历。
class Cities:
def __init__(self):
self._cities = ['Brooklyn', 'Manhattan', 'Prag', 'Madrid', 'London']
self._index = 0
def __iter__(self):
return self
def __next__(self):
if self._index >= len(self._cities):
raise StopIteration
else:
item = self._cities[self._index]
self._index += 1
return item
类Cities的实例是一个迭代器。然而,如果你想在城市上重复,你必须创建一个新对象,这是一个昂贵的操作。你可以把这个类分成两个类:一个返回城市,第二个返回一个迭代器,它将城市作为初始参数。
class Cities:
def __init__(self):
self._cities = ['New York', 'Newark', 'Istanbul', 'London']
def __len__(self):
return len(self._cities)
class CityIterator:
def __init__(self, city_obj):
# cities is an instance of Cities
self._city_obj = city_obj
self._index = 0
def __iter__(self):
return self
def __next__(self):
if self._index >= len(self._city_obj):
raise StopIteration
else:
item = self._city_obj._cities[self._index]
self._index += 1
return item
现在如果我们需要创建一个新的迭代器,我们不需要再次创建数据,也就是城市。我们创建了cities对象并将其传递给迭代器。但我们仍在做额外的工作。我们可以通过只创建一个类来实现这一点。
Iterable是一个实现Iterable协议的Python对象。它只需要返回一个迭代器对象的新实例的__iter__()。
class Cities:
def __init__(self):
self._cities = ['New York', 'Newark', 'Istanbul', 'Paris']
def __len__(self):
return len(self._cities)
def __iter__(self):
return self.CityIterator(self)
class CityIterator:
def __init__(self, city_obj):
self._city_obj = city_obj
self._index = 0
def __iter__(self):
return self
def __next__(self):
if self._index >= len(self._city_obj):
raise StopIteration
else:
item = self._city_obj._cities[self._index]
self._index += 1
return item
迭代器有__iter__和__next__,可迭代对象有__iter__,所以我们可以说迭代器也是可迭代对象,但它们是耗尽的可迭代对象。另一方面,迭代对象永远不会耗尽 因为它们总是返回一个新的迭代器,然后用于迭代
你注意到可迭代器代码的主要部分是在迭代器中,而可迭代器本身只不过是一个额外的层,允许我们创建和访问迭代器。
在可迭代对象上迭代
Python有一个内置的函数iter(),它调用__iter__()。当我们遍历一个可迭代对象时,Python调用iter(),它返回一个迭代器,然后它开始使用迭代器的__next__()来遍历数据。
注意,在上面的例子中,Cities创建了一个可迭代对象,但它不是一个序列类型,这意味着我们不能通过索引获得一个城市。为了解决这个问题,我们应该将__get_item__添加到Cities类中。
class Cities:
def __init__(self):
self._cities = ['New York', 'Newark', 'Budapest', 'Newcastle']
def __len__(self):
return len(self._cities)
def __getitem__(self, s): # now a sequence type
return self._cities[s]
def __iter__(self):
return self.CityIterator(self)
class CityIterator:
def __init__(self, city_obj):
self._city_obj = city_obj
self._index = 0
def __iter__(self):
return self
def __next__(self):
if self._index >= len(self._city_obj):
raise StopIteration
else:
item = self._city_obj._cities[self._index]
self._index += 1
return item
迭代是一个通用术语,指一个接一个地获取某物的每一项。任何时候使用循环,显式或隐式,遍历一组项,这就是迭代。
在Python中,iterable和iterator有特定的含义。
iterable是一个具有__iter__方法的对象,该方法返回一个迭代器,或者定义了__getitem__方法,该方法可以接受从0开始的顺序索引(并在索引不再有效时引发IndexError)。iterable是一个你可以从中获取迭代器的对象。
迭代器是具有next (Python 2)或__next__ (Python 3)方法的对象。
无论何时在Python中使用for循环、map或列表推导式等,都会自动调用下一个方法从迭代器中获取每一项,从而完成迭代过程。
开始学习的一个好地方是教程的迭代器部分和标准类型页面的迭代器类型部分。在您理解了基础知识之后,请尝试函数式编程HOWTO中的迭代器部分。
下面是我的小抄:
sequence
+
|
v
def __getitem__(self, index: int):
+ ...
| raise IndexError
|
|
| def __iter__(self):
| + ...
| | return <iterator>
| |
| |
+--> or <-----+ def __next__(self):
+ | + ...
| | | raise StopIteration
v | |
iterable | |
+ | |
| | v
| +----> and +-------> iterator
| ^
v |
iter(<iterable>) +----------------------+
|
def generator(): |
+ yield 1 |
| generator_expression +-+
| |
+-> generator() +-> generator_iterator +-+
小测验:你看到…
每个迭代器都是可迭代对象? 容器对象的__iter__()方法可以实现为生成器? 具有__next__方法的迭代器不一定是迭代器?
答案:
Every iterator must have an __iter__ method. Having __iter__ is enough to be an iterable. Therefore every iterator is an iterable. When __iter__ is called it should return an iterator (return <iterator> in the diagram above). Calling a generator returns a generator iterator which is a type of iterator. class Iterable1: def __iter__(self): # a method (which is a function defined inside a class body) # calling iter() converts iterable (tuple) to iterator return iter((1,2,3)) class Iterable2: def __iter__(self): # a generator for i in (1, 2, 3): yield i class Iterable3: def __iter__(self): # with PEP 380 syntax yield from (1, 2, 3) # passes assert list(Iterable1()) == list(Iterable2()) == list(Iterable3()) == [1, 2, 3] Here is an example: class MyIterable: def __init__(self): self.n = 0 def __getitem__(self, index: int): return (1, 2, 3)[index] def __next__(self): n = self.n = self.n + 1 if n > 3: raise StopIteration return n # if you can iter it without raising a TypeError, then it's an iterable. iter(MyIterable()) # but obviously `MyIterable()` is not an iterator since it does not have # an `__iter__` method. from collections.abc import Iterator assert isinstance(MyIterable(), Iterator) # AssertionError
推荐文章
- 证书验证失败:无法获得本地颁发者证书
- 当使用pip3安装包时,“Python中的ssl模块不可用”
- 无法切换Python与pyenv
- Python if not == vs if !=
- 如何从scikit-learn决策树中提取决策规则?
- 为什么在Mac OS X v10.9 (Mavericks)的终端中apt-get功能不起作用?
- 将旋转的xtick标签与各自的xtick对齐
- 为什么元组可以包含可变项?
- 如何合并字典的字典?
- 如何创建类属性?
- 数据挖掘中分类和聚类的区别?
- 不区分大小写的“in”
- 在Python中获取迭代器中的元素个数
- 解析日期字符串并更改格式
- 使用try和。Python中的if