是否有可能得到一个1-100之间的随机数,并将结果主要保持在40-60的范围内?我的意思是,它很少会超出这个范围,但我希望它主要在这个范围内……这是可能的JavaScript/jQuery?

现在我只使用基本的Math.random() * 100 + 1。


当前回答

var randNum;
// generate random number from 1-5
var freq = Math.floor(Math.random() * (6 - 1) + 1);
// focus on 40-60 if the number is odd (1,3, or 5)
// this should happen %60 of the time
if (freq % 2){
    randNum = Math.floor(Math.random() * (60 - 40) + 40);
}
else {
    randNum = Math.floor(Math.random() * (100 - 1) + 1);
}

其他回答

生成这样的随机数有很多不同的方法。一种方法是计算多个均匀随机数的和。你和多少个随机数以及它们的范围将决定最终分布的样子。

你加起来的数字越多,它就越向中心倾斜。在你的问题中已经提出了使用1个随机数的和,但正如你注意到的那样,它并不偏向于范围的中心。其他答案建议使用2个随机数的和或3个随机数的和。

通过取更多随机数的和,你可以得到更偏向范围中心的结果。在极端情况下,你可以取99个随机数字的和,每个数字都是0或1。这是一个二项分布。(二项分布在某种意义上可以被看作是正态分布的离散版本)。理论上,这仍然可以覆盖整个范围,但它有很大的偏向中心,你永远不会期望看到它到达端点。

这种方法意味着你可以调整你想要的偏差。

获取数字数组等并不是有效的。您应该采用一个映射,该映射采用0到100之间的随机数,并映射到所需的分布。在这个例子中,你可以取f(x)=-(1/25)x2+4x来得到在你的范围中间值最多的分布。

这个答案真的很好。但是我想针对不同的情况发布实现说明(我不懂JavaScript,所以我希望你能理解)。


假设每个范围都有范围和权重:

ranges - [1, 20], [21, 40], [41, 60], [61, 100]
weights - {1, 2, 100, 5}

初始静态信息,可以缓存:

所有权重之和(样本为108) 范围选择边界。基本上就是这个公式:Boundary[n] = Boundary[n - 1] + weight [n - 1] and Boundary[0] = 0。样本的边界为{0,1,3,103,108}

一代数量:

从范围[0,所有权重之和]生成随机数N。 For (i = 0;i < size(border) && N > border [i + 1];+ + i) 取第i个范围,生成该范围内的随机数。


性能优化的附加说明。范围不需要按升序或降序排列,所以为了更快的范围查找,权重最高的范围应该排在前面,权重最低的范围应该排在最后。

几年前,我需要解决这个问题,我的解决方案比其他任何答案都要简单。

我在边界之间随机生成3个,然后取平均值。这将结果拉向中心,但完全有可能到达边缘。

最简单的方法是从0-50中生成两个随机数,然后将它们相加。

这给出了偏向50的分布,就像滚动两个骰子偏向7一样。

事实上,通过使用更大数量的“骰子”(如@Falco所建议的),你可以更接近钟形曲线:

function weightedRandom(max, numDice) {
    let num = 0;
    for (let i = 0; i < numDice; i++) {
        num += Math.random() * (max/numDice);
    }    
    return num;
}

JSFiddle: http://jsfiddle.net/797qhcza/1/