我用CUDA, c++, c#, Java做了一些基准测试,并使用MATLAB进行验证和矩阵生成。当我用MATLAB执行矩阵乘法时,2048x2048甚至更大的矩阵几乎立即被相乘。

             1024x1024   2048x2048   4096x4096
             ---------   ---------   ---------
CUDA C (ms)      43.11      391.05     3407.99
C++ (ms)       6137.10    64369.29   551390.93
C# (ms)       10509.00   300684.00  2527250.00
Java (ms)      9149.90    92562.28   838357.94
MATLAB (ms)      75.01      423.10     3133.90

只有CUDA是有竞争力的,但我认为至少c++会有点接近,而不是慢60倍。我也不知道如何看待c#的结果。算法与c++和Java一样,但从1024年到2048年有了巨大的飞跃。

MATLAB是如何如此快速地执行矩阵乘法的?

c++代码:

float temp = 0;
timer.start();
for(int j = 0; j < rozmer; j++)
{
    for (int k = 0; k < rozmer; k++)
    {
        temp = 0;
        for (int m = 0; m < rozmer; m++)
        {
            temp = temp + matice1[j][m] * matice2[m][k];
        }
        matice3[j][k] = temp;
    }
}
timer.stop();

当前回答

因为MATLAB最初是为数值线性代数(矩阵操作)开发的编程语言,它有专门为矩阵乘法开发的库。现在MATLAB也可以使用图形处理器(图形处理单元)来实现这一点。

如果我们看一下计算结果:

2048x2048 4096x4096 --------- --------- --------- CUDA C (ms) 43.11 391.05 3407.99 c++ (ms) 6137.10 64369.29 551390.93 c# (ms) 10509.00 300684.00 2527250.00 Java (ms) 9149.90 92562.28 838357.94 MATLAB (ms) 75.01 423.10 3133.90

然后我们可以看到不仅MATLAB在矩阵乘法方面如此之快:CUDA C(来自NVIDIA的编程语言)有一些比MATLAB更好的结果。CUDA C也有专门为矩阵乘法开发的库,它使用gpu。

MATLAB简史

Cleve Moler, the chairman of the computer science department at the University of New Mexico, started developing MATLAB in the late 1970s. He designed it to give his students access to LINPACK (a software library for performing numerical linear algebra) and EISPACK (is a software library for numerical computation of linear algebra) without them having to learn Fortran. It soon spread to other universities and found a strong audience within the applied mathematics community. Jack Little, an engineer, was exposed to it during a visit Moler made to Stanford University in 1983. Recognizing its commercial potential, he joined with Moler and Steve Bangert. They rewrote MATLAB in C and founded MathWorks in 1984 to continue its development. These rewritten libraries were known as JACKPAC. In 2000, MATLAB was rewritten to use a newer set of libraries for matrix manipulation, LAPACK (is a standard software library for numerical linear algebra). Source

什么是CUDA C

CUDA C还使用专门为矩阵乘法开发的库,如OpenGL(开放图形库)。它还使用GPU和Direct3D(在MS Windows上)。

The CUDA platform is designed to work with programming languages such as C, C++, and Fortran. This accessibility makes it easier for specialists in parallel programming to use GPU resources, in contrast to prior APIs like Direct3D and OpenGL, which required advanced skills in graphics programming. Also, CUDA supports programming frameworks such as OpenACC and OpenCL. Example of CUDA processing flow: Copy data from main memory to GPU memory CPU initiates the GPU compute kernel GPU's CUDA cores execute the kernel in parallel Copy the resulting data from GPU memory to main memory

比较CPU和GPU的执行速度

We ran a benchmark in which we measured the amount of time it took to execute 50 time steps for grid sizes of 64, 128, 512, 1024, and 2048 on an Intel Xeon Processor X5650 and then using an NVIDIA Tesla C2050 GPU. For a grid size of 2048, the algorithm shows a 7.5x decrease in compute time from more than a minute on the CPU to less than 10 seconds on the GPU. The log scale plot shows that the CPU is actually faster for small grid sizes. As the technology evolves and matures, however, GPU solutions are increasingly able to handle smaller problems, a trend that we expect to continue. Source

来自CUDA C编程指南的介绍:

Driven by the insatiable market demand for realtime, high-definition 3D graphics, the programmable Graphic Processor Unit or GPU has evolved into a highly parallel, multithreaded, manycore processor with tremendous computational horsepower and very high memory bandwidth, as illustrated by Figure 1 and Figure 2. Figure 1. Floating-Point Operations per Second for the CPU and GPU Figure 2. Memory Bandwidth for the CPU and GPU The reason behind the discrepancy in floating-point capability between the CPU and the GPU is that the GPU is specialized for compute-intensive, highly parallel computation - exactly what graphics rendering is about - and therefore designed such that more transistors are devoted to data processing rather than data caching and flow control, as schematically illustrated by Figure 3. Figure 3. The GPU Devotes More Transistors to Data Processing More specifically, the GPU is especially well-suited to address problems that can be expressed as data-parallel computations - the same program is executed on many data elements in parallel - with high arithmetic intensity - the ratio of arithmetic operations to memory operations. Because the same program is executed for each data element, there is a lower requirement for sophisticated flow control, and because it is executed on many data elements and has high arithmetic intensity, the memory access latency can be hidden with calculations instead of big data caches. Data-parallel processing maps data elements to parallel processing threads. Many applications that process large data sets can use a data-parallel programming model to speed up the computations. In 3D rendering, large sets of pixels and vertices are mapped to parallel threads. Similarly, image and media processing applications such as post-processing of rendered images, video encoding and decoding, image scaling, stereo vision, and pattern recognition can map image blocks and pixels to parallel processing threads. In fact, many algorithms outside the field of image rendering and processing are accelerated by data-parallel processing, from general signal processing or physics simulation to computational finance or computational biology. Source

先进的阅读

图形处理器(图形处理器) MATLAB C编程指南 在MATLAB中使用gpu 基本线性代数子程序(BLAS) 《解析高性能矩阵乘法》,Kazushige Goto和Robert A. Van De Geijn著


一些有趣的面孔

我写过c++矩阵乘法,它和Matlab一样快,但它需要一些小心。(在Matlab使用图形处理器之前)。 Сitation从这个答案。

其他回答

这就是原因。MATLAB不像在c++代码中那样,通过遍历每一个元素来执行简单的矩阵乘法。

当然,我假设你只是用C=A*B而不是自己写一个乘法函数。

Matlab在一段时间前集成了LAPACK,所以我假设他们的矩阵乘法至少用了这么快的速度。LAPACK源代码和文档是现成的。

你也可以看看Goto和Van De Geijn的论文“高性能矩阵的解剖” 乘法”在http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.140.1785&rep=rep1&type=pdf

这种鲜明的对比不仅是由于Matlab的惊人优化(正如许多其他答案已经讨论过的那样),而且是由于您将矩阵作为一个对象来表述的方式。

看起来你把矩阵变成了列表的列表?列表的列表包含指向列表的指针,然后包含您的矩阵元素。所包含列表的位置是任意分配的。当循环遍历第一个索引(行号?)时,内存访问时间非常重要。相比之下,为什么不尝试实现矩阵作为一个单一的列表/向量使用下面的方法?

#include <vector>

struct matrix {
    matrix(int x, int y) : n_row(x), n_col(y), M(x * y) {}
    int n_row;
    int n_col;
    std::vector<double> M;
    double &operator()(int i, int j);
};

And

double &matrix::operator()(int i, int j) {
    return M[n_col * i + j];
}

应该使用相同的乘法算法,以使触发器的数量相同。(大小为n的方阵为n^3)

我要求您对它进行计时,以便结果与前面(在同一台机器上)的结果相比较。通过比较,您将准确地显示内存访问时间有多么重要!

当做矩阵乘法时,你使用朴素乘法,它需要O(n^3)的时间。

有一个矩阵乘法算法,它需要O(n^2.4)。这意味着当n=2000时,你的算法需要的计算量是最佳算法的100倍。 你真的应该去维基百科上查看矩阵乘法的页面,以获得关于有效实现矩阵乘法的进一步信息。

MATLAB使用英特尔的LAPACK的高度优化实现,称为英特尔数学内核库(英特尔MKL) -特别是dgemm函数。这个库充分利用了处理器的特性,包括SIMD指令和多核处理器。他们没有记录他们使用的具体算法。如果从c++调用Intel MKL,应该会看到类似的性能。

我不确定MATLAB使用什么库来进行GPU乘法,但可能是nVidia CUBLAS之类的。