我已经用CNN训练了一个二元分类模型,下面是我的代码

model = Sequential()
model.add(Convolution2D(nb_filters, kernel_size[0], kernel_size[1],
                        border_mode='valid',
                        input_shape=input_shape))
model.add(Activation('relu'))
model.add(Convolution2D(nb_filters, kernel_size[0], kernel_size[1]))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=pool_size))
# (16, 16, 32)
model.add(Convolution2D(nb_filters*2, kernel_size[0], kernel_size[1]))
model.add(Activation('relu'))
model.add(Convolution2D(nb_filters*2, kernel_size[0], kernel_size[1]))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=pool_size))
# (8, 8, 64) = (2048)
model.add(Flatten())
model.add(Dense(1024))
model.add(Activation('relu'))
model.add(Dropout(0.5))
model.add(Dense(2))  # define a binary classification problem
model.add(Activation('softmax'))

model.compile(loss='categorical_crossentropy',
              optimizer='adadelta',
              metrics=['accuracy'])
model.fit(x_train, y_train,
          batch_size=batch_size,
          nb_epoch=nb_epoch,
          verbose=1,
          validation_data=(x_test, y_test))

这里,我想要得到每一层的输出就像TensorFlow一样,我该怎么做呢?


当前回答

这个答案基于:https://stackoverflow.com/a/59557567/2585501

打印单个图层的输出:

from tensorflow.keras import backend as K
layerIndex = 1
func = K.function([model.get_layer(index=0).input], model.get_layer(index=layerIndex).output)
layerOutput = func([input_data])  # input_data is a numpy array
print(layerOutput)

打印每一层的输出:

from tensorflow.keras import backend as K
for layerIndex, layer in enumerate(model.layers):
    func = K.function([model.get_layer(index=0).input], layer.output)
    layerOutput = func([input_data])  # input_data is a numpy array
    print(layerOutput)

其他回答

通常,输出大小可以计算为

[(W−K + 2P / S] + 1

在哪里

W is the input volume - in your case you have not given us this
K is the Kernel size - in your case 2 == "filter" 
P is the padding - in your case 2
S is the stride - in your case 3

另一个更漂亮的说法是:

从https://keras.io/getting-started/faq/ how-can-i-obtain-the-output-of-an-intermediate-layer

一个简单的方法是创建一个新的模型,输出你感兴趣的图层:

from keras.models import Model

model = ...  # include here your original model

layer_name = 'my_layer'
intermediate_layer_model = Model(inputs=model.input,
                                 outputs=model.get_layer(layer_name).output)
intermediate_output = intermediate_layer_model.predict(data)

或者,你可以构建一个Keras函数,它将返回给定特定输入的特定层的输出,例如:

from keras import backend as K

# with a Sequential model
get_3rd_layer_output = K.function([model.layers[0].input],
                                  [model.layers[3].output])
layer_output = get_3rd_layer_output([x])[0]

以下对我来说很简单:

model.layers[idx].output

上面是一个张量对象,所以你可以使用应用于张量对象的操作来修改它。

例如,要获取形状model.layers[idx].output.get_shape()

Idx是该层的索引,你可以从model.summary()中找到它

根据这个线程的所有好答案,我写了一个库来获取每一层的输出。它抽象了所有的复杂性,并被设计成尽可能友好的用户:

https://github.com/philipperemy/keract

它可以处理几乎所有的边界情况。

希望能有所帮助!

如果你有以下情况之一:

InvalidArgumentError: input_X:Y既被提供也被获取 多输入情况

您需要做以下更改:

为输出变量中的输入层添加过滤 函子循环的微小变化

最小的例子:

from keras.engine.input_layer import InputLayer
inp = model.input
outputs = [layer.output for layer in model.layers if not isinstance(layer, InputLayer)]
functors = [K.function(inp + [K.learning_phase()], [x]) for x in outputs]
layer_outputs = [fun([x1, x2, xn, 1]) for fun in functors]