最近我一直在iPhone上玩一款名为《Scramble》的游戏。有些人可能知道这个游戏叫拼字游戏。从本质上讲,当游戏开始时,你会得到一个字母矩阵:
F X I E
A M L O
E W B X
A S T U
The goal of the game is to find as many words as you can that can be formed by chaining letters together. You can start with any letter, and all the letters that surround it are fair game, and then once you move on to the next letter, all the letters that surround that letter are fair game, except for any previously used letters. So in the grid above, for example, I could come up with the words LOB, TUX, SEA, FAME, etc. Words must be at least 3 characters, and no more than NxN characters, which would be 16 in this game but can vary in some implementations. While this game is fun and addictive, I am apparently not very good at it and I wanted to cheat a little bit by making a program that would give me the best possible words (the longer the word the more points you get).
(来源:boggled.org)
不幸的是,我不太擅长算法或它们的效率等等。我的第一次尝试使用一个像这样的字典(约2.3MB),并进行线性搜索,试图匹配字典条目的组合。这需要花费很长时间来找到可能的单词,因为你每轮只有2分钟的时间,这是不够的。
我很有兴趣看看是否有任何Stackoverflowers可以提出更有效的解决方案。我主要是在寻找使用三大p的解决方案:Python、PHP和Perl,尽管任何使用Java或c++的东西也很酷,因为速度是至关重要的。
目前的解决方案:
Adam Rosenfield, Python, ~20岁
John Fouhy, Python, ~3秒
Kent Fredric, Perl, ~1s
Darius Bacon, Python, ~1s
rvarcher, VB。净,~ 1 s
Paolo Bergantino, PHP(实时链接),~5s(本地~2s)
我花了3个月的时间致力于解决10个最佳点密集的5x5 Boggle板问题。
这个问题现在已经解决了,并在5个网页上进行了全面披露。有问题请联系我。
该棋盘分析算法使用显式堆栈,通过具有直接子信息的有向无环词图伪递归遍历棋盘方格,并使用时间戳跟踪机制。这很可能是世界上最先进的词汇数据结构。
该方案在四核上每秒评估大约10,000块非常好的电路板。(9500 +分)
父网页:
DeepSearch.c - http://www.pathcom.com/~vadco/deep.html
组件网页:
最佳记分牌- http://www.pathcom.com/~vadco/binary.html
高级词汇结构- http://www.pathcom.com/~vadco/adtdawg.html
板分析算法- http://www.pathcom.com/~vadco/guns.html
并行批处理- http://www.pathcom.com/~vadco/parallel.html
-
只有追求最好的人才会对这本全面的著作感兴趣。
package ProblemSolving;
import java.util.HashSet;
import java.util.Set;
/**
* Given a 2-dimensional array of characters and a
* dictionary in which a word can be searched in O(1) time.
* Need to print all the words from array which are present
* in dictionary. Word can be formed in any direction but
* has to end at any edge of array.
* (Need not worry much about the dictionary)
*/
public class DictionaryWord {
private static char[][] matrix = new char[][]{
{'a', 'f', 'h', 'u', 'n'},
{'e', 't', 'a', 'i', 'r'},
{'a', 'e', 'g', 'g', 'o'},
{'t', 'r', 'm', 'l', 'p'}
};
private static int dim_x = matrix.length;
private static int dim_y = matrix[matrix.length -1].length;
private static Set<String> wordSet = new HashSet<String>();
public static void main(String[] args) {
//dictionary
wordSet.add("after");
wordSet.add("hate");
wordSet.add("hair");
wordSet.add("air");
wordSet.add("eat");
wordSet.add("tea");
for (int x = 0; x < dim_x; x++) {
for (int y = 0; y < dim_y; y++) {
checkAndPrint(matrix[x][y] + "");
int[][] visitedMap = new int[dim_x][dim_y];
visitedMap[x][y] = 1;
recursion(matrix[x][y] + "", visitedMap, x, y);
}
}
}
private static void checkAndPrint(String word) {
if (wordSet.contains(word)) {
System.out.println(word);
}
}
private static void recursion(String word, int[][] visitedMap, int x, int y) {
for (int i = Math.max(x - 1, 0); i < Math.min(x + 2, dim_x); i++) {
for (int j = Math.max(y - 1, 0); j < Math.min(y + 2, dim_y); j++) {
if (visitedMap[i][j] == 1) {
continue;
} else {
int[][] newVisitedMap = new int[dim_x][dim_y];
for (int p = 0; p < dim_x; p++) {
for (int q = 0; q < dim_y; q++) {
newVisitedMap[p][q] = visitedMap[p][q];
}
}
newVisitedMap[i][j] = 1;
checkAndPrint(word + matrix[i][j]);
recursion(word + matrix[i][j], newVisitedMap, i, j);
}
}
}
}
}
我意识到这个问题的时间来了又去了,但由于我自己正在研究一个求解器,并在谷歌搜索时偶然发现了这个,我想我应该发布一个参考,因为它似乎与其他一些问题有点不同。
我选择在游戏棋盘上使用平面数组,并从棋盘上的每个字母进行递归搜索,从有效邻居遍历到有效邻居,如果索引中的有效前缀是当前字母列表,则扩展搜索。而遍历当前单词的概念是进入板的索引列表,而不是组成单词的字母。在检查索引时,将索引转换为字母并完成检查。
索引是一个蛮力字典,有点像trie,但允许对索引进行python查询。如果单词'cat'和'cater'在列表中,你会在字典中看到:
d = { 'c': ['cat','cater'],
'ca': ['cat','cater'],
'cat': ['cat','cater'],
'cate': ['cater'],
'cater': ['cater'],
}
因此,如果current_word是'ca',您就知道它是一个有效的前缀,因为'ca'在d中返回True(因此继续遍历板)。如果current_word是'cat',那么你知道它是一个有效的单词,因为它是一个有效的前缀,并且d['cat']中的'cat'也返回True。
如果感觉这允许一些可读的代码,似乎不是太慢。像其他人一样,这个系统的费用是读取/构建索引。解这个板子相当麻烦。
代码在http://gist.github.com/268079。它是故意垂直和幼稚的,有很多明确的有效性检查,因为我想理解问题,而不是用一堆魔法或晦涩难懂的东西把它弄得乱七八糟。