我如何创建一个空DataFrame,然后添加行,一个接一个?

我创建了一个空DataFrame:

df = pd.DataFrame(columns=('lib', 'qty1', 'qty2'))

然后我可以在最后添加一个新行,并填充一个字段:

df = df._set_value(index=len(df), col='qty1', value=10.0)

它一次只适用于一个领域。向df中添加新行有什么更好的方法?


当前回答

如果你事先知道条目的数量,你应该通过提供索引来预分配空间(从不同的答案中获得数据示例):

import pandas as pd
import numpy as np
# we know we're gonna have 5 rows of data
numberOfRows = 5
# create dataframe
df = pd.DataFrame(index=np.arange(0, numberOfRows), columns=('lib', 'qty1', 'qty2') )

# now fill it up row by row
for x in np.arange(0, numberOfRows):
    #loc or iloc both work here since the index is natural numbers
    df.loc[x] = [np.random.randint(-1,1) for n in range(3)]
In[23]: df
Out[23]: 
   lib  qty1  qty2
0   -1    -1    -1
1    0     0     0
2   -1     0    -1
3    0    -1     0
4   -1     0     0

速度比较

In[30]: %timeit tryThis() # function wrapper for this answer
In[31]: %timeit tryOther() # function wrapper without index (see, for example, @fred)
1000 loops, best of 3: 1.23 ms per loop
100 loops, best of 3: 2.31 ms per loop

而且,从评论中可以看出,如果尺寸为6000,速度差异会变得更大:

增加数组的大小(12)和行数(500)使 速度上的差异更加显著:313毫秒vs 2.29秒

其他回答

您还可以建立一个列表的列表,并将其转换为数据框架-

import pandas as pd

columns = ['i','double','square']
rows = []

for i in range(6):
    row = [i, i*2, i*i]
    rows.append(row)

df = pd.DataFrame(rows, columns=columns)

    i   double  square
0   0   0   0
1   1   2   1
2   2   4   4
3   3   6   9
4   4   8   16
5   5   10  25

您可以为此连接两个数据框架。我基本上遇到了这个问题,用字符索引(不是数字)向现有的DataFrame添加新行。

因此,我在一个管道()中输入新行数据,并在一个列表中索引。

new_dict = {put input for new row here}
new_list = [put your index here]

new_df = pd.DataFrame(data=new_dict, index=new_list)

df = pd.concat([existing_df, new_df])

这个代码片段使用字典列表来更新数据帧。它补充了ShikharDua和Mikhail_Sam的答案。

import pandas as pd
colour = ["red", "big", "tasty"]
fruits = ["apple", "banana", "cherry"]
dict1={}
feat_list=[]
for x in colour:
    for y in fruits:
#         print(x, y)
        dict1 = dict([('x',x),('y',y)])
#         print(f'dict 1 {dict1}')
        feat_list.append(dict1)
#         print(f'feat_list {feat_list}')
feat_df=pd.DataFrame(feat_list)
feat_df.to_csv('feat1.csv')

你可以使用pandas.concat()。有关详细信息和示例,请参见合并、连接和连接。

例如:

def append_row(df, row):
    return pd.concat([
                df, 
                pd.DataFrame([row], columns=row.index)]
           ).reset_index(drop=True)

df = pd.DataFrame(columns=('lib', 'qty1', 'qty2'))
new_row = pd.Series({'lib':'A', 'qty1':1, 'qty2': 2})

df = append_row(df, new_row)
mycolumns = ['A', 'B']
df = pd.DataFrame(columns=mycolumns)
rows = [[1,2],[3,4],[5,6]]
for row in rows:
    df.loc[len(df)] = row