我如何创建一个空DataFrame,然后添加行,一个接一个?

我创建了一个空DataFrame:

df = pd.DataFrame(columns=('lib', 'qty1', 'qty2'))

然后我可以在最后添加一个新行,并填充一个字段:

df = df._set_value(index=len(df), col='qty1', value=10.0)

它一次只适用于一个领域。向df中添加新行有什么更好的方法?


当前回答

如果你想在末尾添加一行,将其作为列表追加:

valuestoappend = [va1, val2, val3]
res = res.append(pd.Series(valuestoappend, index = ['lib', 'qty1', 'qty2']), ignore_index = True)

其他回答

可以使用ignore_index选项将单行追加为字典。

>>> f = pandas.DataFrame(data = {'Animal':['cow','horse'], 'Color':['blue', 'red']})
>>> f
  Animal Color
0    cow  blue
1  horse   red
>>> f.append({'Animal':'mouse', 'Color':'black'}, ignore_index=True)
  Animal  Color
0    cow   blue
1  horse    red
2  mouse  black

我们经常看到结构df。loc[下标]=…分配给一个数据帧行。Mikhail_Sam发布了包含这个构造以及使用dict并最终创建DataFrame的方法的基准测试。他发现后者是目前为止最快的。

但是如果我们替换df3。loc[i] =…(与预分配的DataFrame)在他的代码df3。值[i] =…时,结果会发生显著变化,因为该方法的执行与使用dict的方法类似。所以我们应该经常使用df。考虑[下标]=…但是请注意,.values有一个从零开始的下标,这可能与DataFrame.index不同。

这将负责向空DataFrame添加一个项。问题是对于第一个索引,df.index.max() == nan:

df = pd.DataFrame(columns=['timeMS', 'accelX', 'accelY', 'accelZ', 'gyroX', 'gyroY', 'gyroZ'])

df.loc[0 if math.isnan(df.index.max()) else df.index.max() + 1] = [x for x in range(7)]

你可以使用pandas.concat()。有关详细信息和示例,请参见合并、连接和连接。

例如:

def append_row(df, row):
    return pd.concat([
                df, 
                pd.DataFrame([row], columns=row.index)]
           ).reset_index(drop=True)

df = pd.DataFrame(columns=('lib', 'qty1', 'qty2'))
new_row = pd.Series({'lib':'A', 'qty1':1, 'qty2': 2})

df = append_row(df, new_row)

有关有效附加,请参见如何向pandas数据框架添加额外行和使用放大设置。

通过loc/ix在不存在的键索引数据上添加行。例如:

In [1]: se = pd.Series([1,2,3])

In [2]: se
Out[2]:
0    1
1    2
2    3
dtype: int64

In [3]: se[5] = 5.

In [4]: se
Out[4]:
0    1.0
1    2.0
2    3.0
5    5.0
dtype: float64

Or:

In [1]: dfi = pd.DataFrame(np.arange(6).reshape(3,2),
   .....:                 columns=['A','B'])
   .....:

In [2]: dfi
Out[2]:
   A  B
0  0  1
1  2  3
2  4  5

In [3]: dfi.loc[:,'C'] = dfi.loc[:,'A']

In [4]: dfi
Out[4]:
   A  B  C
0  0  1  0
1  2  3  2
2  4  5  4
In [5]: dfi.loc[3] = 5

In [6]: dfi
Out[6]:
   A  B  C
0  0  1  0
1  2  3  2
2  4  5  4
3  5  5  5