我如何创建一个空DataFrame,然后添加行,一个接一个?
我创建了一个空DataFrame:
df = pd.DataFrame(columns=('lib', 'qty1', 'qty2'))
然后我可以在最后添加一个新行,并填充一个字段:
df = df._set_value(index=len(df), col='qty1', value=10.0)
它一次只适用于一个领域。向df中添加新行有什么更好的方法?
我如何创建一个空DataFrame,然后添加行,一个接一个?
我创建了一个空DataFrame:
df = pd.DataFrame(columns=('lib', 'qty1', 'qty2'))
然后我可以在最后添加一个新行,并填充一个字段:
df = df._set_value(index=len(df), col='qty1', value=10.0)
它一次只适用于一个领域。向df中添加新行有什么更好的方法?
当前回答
如果你想在末尾添加一行,将其作为列表追加:
valuestoappend = [va1, val2, val3]
res = res.append(pd.Series(valuestoappend, index = ['lib', 'qty1', 'qty2']), ignore_index = True)
其他回答
在向dataframe添加大量行的情况下,我对性能感兴趣。所以我尝试了四种最流行的方法,并检查了它们的速度。
性能
使用.append (NPE的答案) 使用。loc (fred的回答) 使用.loc预分配(FooBar的答案) 使用dict并最终创建DataFrame (ShikharDua的回答)
运行时结果(秒):
Approach | 1000 rows | 5000 rows | 10 000 rows |
---|---|---|---|
.append | 0.69 | 3.39 | 6.78 |
.loc without prealloc | 0.74 | 3.90 | 8.35 |
.loc with prealloc | 0.24 | 2.58 | 8.70 |
dict | 0.012 | 0.046 | 0.084 |
所以我自己用了加法法。
代码:
import pandas as pd
import numpy as np
import time
del df1, df2, df3, df4
numOfRows = 1000
# append
startTime = time.perf_counter()
df1 = pd.DataFrame(np.random.randint(100, size=(5,5)), columns=['A', 'B', 'C', 'D', 'E'])
for i in range( 1,numOfRows-4):
df1 = df1.append( dict( (a,np.random.randint(100)) for a in ['A','B','C','D','E']), ignore_index=True)
print('Elapsed time: {:6.3f} seconds for {:d} rows'.format(time.perf_counter() - startTime, numOfRows))
print(df1.shape)
# .loc w/o prealloc
startTime = time.perf_counter()
df2 = pd.DataFrame(np.random.randint(100, size=(5,5)), columns=['A', 'B', 'C', 'D', 'E'])
for i in range( 1,numOfRows):
df2.loc[i] = np.random.randint(100, size=(1,5))[0]
print('Elapsed time: {:6.3f} seconds for {:d} rows'.format(time.perf_counter() - startTime, numOfRows))
print(df2.shape)
# .loc with prealloc
df3 = pd.DataFrame(index=np.arange(0, numOfRows), columns=['A', 'B', 'C', 'D', 'E'] )
startTime = time.perf_counter()
for i in range( 1,numOfRows):
df3.loc[i] = np.random.randint(100, size=(1,5))[0]
print('Elapsed time: {:6.3f} seconds for {:d} rows'.format(time.perf_counter() - startTime, numOfRows))
print(df3.shape)
# dict
startTime = time.perf_counter()
row_list = []
for i in range (0,5):
row_list.append(dict( (a,np.random.randint(100)) for a in ['A','B','C','D','E']))
for i in range( 1,numOfRows-4):
dict1 = dict( (a,np.random.randint(100)) for a in ['A','B','C','D','E'])
row_list.append(dict1)
df4 = pd.DataFrame(row_list, columns=['A','B','C','D','E'])
print('Elapsed time: {:6.3f} seconds for {:d} rows'.format(time.perf_counter() - startTime, numOfRows))
print(df4.shape)
附注:我相信我的实现并不完美,也许还有一些优化可以做。
与ShikharDua的答案(基于行)中的字典列表不同,我们也可以将我们的表表示为一个列表字典(基于列),其中每个列表按行顺序存储一列,前提是我们事先知道我们的列。最后,我们构造一次DataFrame。
在这两种情况下,字典键始终是列名。行顺序隐式存储为列表中的order。对于c列和n行,它使用一个c个字典列表,而不是一个n个字典列表。字典列表方法让每个字典冗余地存储所有键,并且需要为每一行创建一个新字典。这里我们只追加到列表中,这总体上是相同的时间复杂度(向列表和字典中添加条目都是平摊常数时间),但由于操作简单,开销可能更小。
# Current data
data = {"Animal":["cow", "horse"], "Color":["blue", "red"]}
# Adding a new row (be careful to ensure every column gets another value)
data["Animal"].append("mouse")
data["Color"].append("black")
# At the end, construct our DataFrame
df = pd.DataFrame(data)
# Animal Color
# 0 cow blue
# 1 horse red
# 2 mouse black
下面是在Pandas数据框架中添加/追加一行的方法:
def add_row(df, row):
df.loc[-1] = row
df.index = df.index + 1
return df.sort_index()
add_row(df, [1,2,3])
它可以用于在空的或填充的Pandas数据框架中插入/追加一行。
这个代码片段使用字典列表来更新数据帧。它补充了ShikharDua和Mikhail_Sam的答案。
import pandas as pd
colour = ["red", "big", "tasty"]
fruits = ["apple", "banana", "cherry"]
dict1={}
feat_list=[]
for x in colour:
for y in fruits:
# print(x, y)
dict1 = dict([('x',x),('y',y)])
# print(f'dict 1 {dict1}')
feat_list.append(dict1)
# print(f'feat_list {feat_list}')
feat_df=pd.DataFrame(feat_list)
feat_df.to_csv('feat1.csv')
我想出了一个简单而美好的方法:
>>> df
A B C
one 1 2 3
>>> df.loc["two"] = [4,5,6]
>>> df
A B C
one 1 2 3
two 4 5 6
请注意评论中提到的性能警告。