我如何创建一个空DataFrame,然后添加行,一个接一个?

我创建了一个空DataFrame:

df = pd.DataFrame(columns=('lib', 'qty1', 'qty2'))

然后我可以在最后添加一个新行,并填充一个字段:

df = df._set_value(index=len(df), col='qty1', value=10.0)

它一次只适用于一个领域。向df中添加新行有什么更好的方法?


当前回答

您可以使用生成器对象来创建一个Dataframe,这将在列表中更有效地使用内存。

num = 10

# Generator function to generate generator object
def numgen_func(num):
    for i in range(num):
        yield ('name_{}'.format(i), (i*i), (i*i*i))

# Generator expression to generate generator object (Only once data get populated, can not be re used)
numgen_expression = (('name_{}'.format(i), (i*i), (i*i*i)) for i in range(num) )

df = pd.DataFrame(data=numgen_func(num), columns=('lib', 'qty1', 'qty2'))

要向现有的数据帧添加raw,可以使用append方法。

df = df.append([{ 'lib': "name_20", 'qty1': 20, 'qty2': 400  }])

其他回答

简单点。通过将一个列表作为输入,该列表将作为一行添加到数据帧中:

import pandas as pd
res = pd.DataFrame(columns=('lib', 'qty1', 'qty2'))
for i in range(5):
    res_list = list(map(int, input().split()))
    res = res.append(pd.Series(res_list, index=['lib', 'qty1', 'qty2']), ignore_index=True)

我想出了一个简单而美好的方法:

>>> df
     A  B  C
one  1  2  3
>>> df.loc["two"] = [4,5,6]
>>> df
     A  B  C
one  1  2  3
two  4  5  6

请注意评论中提到的性能警告。

您可以为此连接两个数据框架。我基本上遇到了这个问题,用字符索引(不是数字)向现有的DataFrame添加新行。

因此,我在一个管道()中输入新行数据,并在一个列表中索引。

new_dict = {put input for new row here}
new_list = [put your index here]

new_df = pd.DataFrame(data=new_dict, index=new_list)

df = pd.concat([existing_df, new_df])

另一种方法(可能不是很有效):

# add a row
def add_row(df, row):
    colnames = list(df.columns)
    ncol = len(colnames)
    assert ncol == len(row), "Length of row must be the same as width of DataFrame: %s" % row
    return df.append(pd.DataFrame([row], columns=colnames))

你也可以像这样增强DataFrame类:

import pandas as pd
def add_row(self, row):
    self.loc[len(self.index)] = row
pd.DataFrame.add_row = add_row

如果你有一个数据帧df,想要添加一个列表new_list作为一个新行到df,你可以简单地做:

df.loc[len(df)] = new_list

如果你想在数据帧df下添加一个新的数据帧new_df,那么你可以使用:

df.append(new_df)