我将数据从.csv文件读取到Pandas数据框架,如下所示。对于其中一列,即id,我想将列类型指定为int。问题是id系列有缺失/空值。

当我试图在读取.csv时将id列强制转换为整数时,我得到:

df= pd.read_csv("data.csv", dtype={'id': int}) 
error: Integer column has NA values

或者,我尝试转换列类型后,阅读如下,但这一次我得到:

df= pd.read_csv("data.csv") 
df[['id']] = df[['id']].astype(int)
error: Cannot convert NA to integer

我该如何解决这个问题?


当前回答

我认为@消化1010101的方法更适合Pandas 1.2。+版本,像这样的东西应该做的工作:

df = df.astype({
            'col_1': 'Int64',
            'col_2': 'Int64',
            'col_3': 'Int64',
            'col_4': 'Int64', })

其他回答

这里的大多数解决方案都告诉您如何使用占位符整数来表示null。但是,如果不确定源数据中不会出现整数,那么这种方法就没有帮助。我的方法将格式浮动没有他们的十进制值,并将null转换为None。结果是一个对象数据类型,当加载到CSV中时,它看起来像一个带空值的整数字段。

keep_df[col] = keep_df[col].apply(lambda x: None if pandas.isnull(x) else '{0:.0f}'.format(pandas.to_numeric(x)))

因为我在这里没有看到答案,我不妨加上它:

如果你因为某种原因仍然不能处理np,可以用一行程序将nan转换为空字符串。Na或者pd。我和我一样,在使用旧版本的熊猫库时:

df select_dtypes(“当家”)。astype (str) fillna(- 1)。replace(“- 1”、“)

从Pandas 1.0.0开始,你可以使用Pandas了。NA的价值观。这不会强制缺少值的整数列为浮点数。

在读取数据时,您需要做的是:

df= pd.read_csv("data.csv", dtype={'id': 'Int64'})  

注意'Int64'被引号括起来,I是大写的。这区分了Panda的'Int64'和numpy的'Int64'。

作为旁注,这也适用于.astype()

df['id'] = df['id'].astype('Int64')

文件在这里 https://pandas.pydata.org/pandas-docs/stable/user_guide/integer_na.html

import pandas as pd

df= pd.read_csv("data.csv")
df['id'] = pd.to_numeric(df['id'])

无论您的pandas系列是对象数据类型还是简单的浮点数据类型,下面的方法都可以工作

df = pd.read_csv("data.csv") 
df['id'] = df['id'].astype(float).astype('Int64')