如何编写从CSV文件导入数据并填充表的存储过程?


当前回答

使用下面的SQL代码:

copy table_name(atribute1,attribute2,attribute3...)
from 'E:\test.csv' delimiter ',' csv header

header关键字让DBMS知道CSV文件有一个带有属性的头。

欲了解更多信息,请访问导入CSV文件到PostgreSQL表。

其他回答

使用下面的SQL代码:

copy table_name(atribute1,attribute2,attribute3...)
from 'E:\test.csv' delimiter ',' csv header

header关键字让DBMS知道CSV文件有一个带有属性的头。

欲了解更多信息,请访问导入CSV文件到PostgreSQL表。

这是我个人使用PostgreSQL的经验,我还在等待更快的方法。

Create a table skeleton first if the file is stored locally: drop table if exists ur_table; CREATE TABLE ur_table ( id serial NOT NULL, log_id numeric, proc_code numeric, date timestamp, qty int, name varchar, price money ); COPY ur_table(id, log_id, proc_code, date, qty, name, price) FROM '\path\xxx.csv' DELIMITER ',' CSV HEADER; When the \path\xxx.csv file is on the server, PostgreSQL doesn't have the permission to access the server. You will have to import the .csv file through the pgAdmin built in functionality. Right click the table name and choose import.

如果您仍然有问题,请参考本教程:导入CSV文件到PostgreSQL表

DBeaver社区版(DBeaver .io)使得连接到数据库,然后导入CSV文件上传到PostgreSQL数据库变得很简单。它还可以方便地发出查询、检索数据以及将结果集下载为CSV、JSON、SQL或其他常见数据格式。

它是一个面向SQL程序员、dba和分析师的自由/开源多平台数据库工具,支持所有流行的数据库:MySQL、PostgreSQL、SQLite、Oracle、DB2、SQL Server、Sybase、MS Access、Teradata、Firebird、Hive、Presto等。对于Postgres的TOAD, SQL Server的TOAD,或者Oracle的TOAD,它是一个可行的自由/开源软件竞争对手。

I have no affiliation with DBeaver. I love the price (FREE!) and full functionality, but I wish they would open up this DBeaver/Eclipse application more and make it easy to add analytics widgets to DBeaver / Eclipse, rather than requiring users to pay for the $199 annual subscription just to create graphs and charts directly within the application. My Java coding skills are rusty and I don't feel like taking weeks to relearn how to build Eclipse widgets, (only to find that DBeaver has probably disabled the ability to add third-party widgets to the DBeaver Community Edition.)

一种快速的方法是使用Python Pandas库(0.15或更高版本最好)。这将为您处理创建列的问题——尽管它为数据类型所做的选择可能不是您想要的。如果它不能完全做到你想要的,你总是可以使用生成为模板的“创建表”代码。

这里有一个简单的例子:

import pandas as pd
df = pd.read_csv('mypath.csv')
df.columns = [c.lower() for c in df.columns] # PostgreSQL doesn't like capitals or spaces

from sqlalchemy import create_engine
engine = create_engine('postgresql://username:password@localhost:5432/dbname')

df.to_sql("my_table_name", engine)

下面是一些代码,告诉你如何设置各种选项:

# Set it so the raw SQL output is logged
import logging
logging.basicConfig()
logging.getLogger('sqlalchemy.engine').setLevel(logging.INFO)

df.to_sql("my_table_name2",
          engine,
          if_exists="append",  # Options are ‘fail’, ‘replace’, ‘append’, default ‘fail’
          index = False, # Do not output the index of the dataframe
          dtype = {'col1': sqlalchemy.types.NUMERIC,
                   'col2': sqlalchemy.types.String}) # Datatypes should be SQLAlchemy types

您还可以使用pgAdmin,它提供了一个GUI来执行导入。这在这个SO线程中显示。使用pgAdmin的优点是它也适用于远程数据库。

不过,与前面的解决方案非常相似,您需要在数据库中已经有表。每个人都有自己的解决方案,但我通常在Excel中打开CSV文件,复制标题,在不同的工作表上粘贴特殊的换位,在下一列上放置相应的数据类型,然后将其复制并粘贴到文本编辑器中,并使用适当的SQL表创建查询,如下所示:

CREATE TABLE my_table (
    /* Paste data from Excel here for example ... */
    col_1 bigint,
    col_2 bigint,
    /* ... */
    col_n bigint
)