我有一个熊猫数据框架,df_test。它包含一个列'size',以字节为单位表示大小。我已经计算了KB, MB和GB使用以下代码:

df_test = pd.DataFrame([
    {'dir': '/Users/uname1', 'size': 994933},
    {'dir': '/Users/uname2', 'size': 109338711},
])

df_test['size_kb'] = df_test['size'].astype(int).apply(lambda x: locale.format("%.1f", x / 1024.0, grouping=True) + ' KB')
df_test['size_mb'] = df_test['size'].astype(int).apply(lambda x: locale.format("%.1f", x / 1024.0 ** 2, grouping=True) + ' MB')
df_test['size_gb'] = df_test['size'].astype(int).apply(lambda x: locale.format("%.1f", x / 1024.0 ** 3, grouping=True) + ' GB')

df_test


             dir       size       size_kb   size_mb size_gb
0  /Users/uname1     994933      971.6 KB    0.9 MB  0.0 GB
1  /Users/uname2  109338711  106,776.1 KB  104.3 MB  0.1 GB

[2 rows x 5 columns]

我已经运行了超过120,000行,根据%timeit,每列大约需要2.97秒* 3 = ~9秒。

有什么办法能让它快点吗?例如,我可以从apply中一次返回一列并运行3次,我可以一次返回所有三列以插入到原始的数据框架中吗?

我发现的其他问题都希望接受多个值并返回一个值。我想取一个值并返回多个列。


当前回答

这是一种非常快速的方法,用apply和。只需将多个值作为列表返回,然后使用to_list()

import pandas as pd

dat = [ [i, 10*i] for i in range(100000)]

df = pd.DataFrame(dat, columns = ["a","b"])

def add_and_div(x):
    add = x + 3
    div = x / 3
    return [add, div]

start = time.time()
df[['c','d']] = df['a'].apply(lambda x: add_and_div(x)).to_list()
end = time.time()

print(end-start) # output: 0.27606

其他回答

您可以从包含新数据的应用函数返回一个Series,从而避免需要迭代三次。将axis=1传递给apply函数,将函数的大小应用到数据框架的每一行,返回一个要添加到新数据框架的序列。这个序列s包含新的值,以及原始数据。

def sizes(s):
    s['size_kb'] = locale.format("%.1f", s['size'] / 1024.0, grouping=True) + ' KB'
    s['size_mb'] = locale.format("%.1f", s['size'] / 1024.0 ** 2, grouping=True) + ' MB'
    s['size_gb'] = locale.format("%.1f", s['size'] / 1024.0 ** 3, grouping=True) + ' GB'
    return s

df_test = df_test.append(rows_list)
df_test = df_test.apply(sizes, axis=1)

简单明了:

def func(item_df):
  return [1,'Label 1'] if item_df['col_0'] > 0 else [0,'Label 0']
 
my_df[['col_1','col2']] = my_df.apply(func, axis=1,result_type='expand')

它提供了一个新的数据框架,其中包含原始数据框架的两列。

import pandas as pd
df = ...
df_with_two_columns = df.apply(lambda row:pd.Series([row['column_1'], row['column_2']], index=['column_1', 'column_2']),axis = 1)

我想在groupby上使用apply。我试着用你建议的方法。它确实对我有帮助,但不是全部。

添加result_type='expand'没有工作(因为我在系列上使用apply而不是DataFrame?)和zip(*___),我失去了索引。

如果其他人也有同样的问题,下面是我(最终)解决它的方法:

dfg = df.groupby(by=['Column1','Column2']).Column3.apply(myfunc)
dfres = pd.DataFrame()
dfres['a'], dfres['b'], dfres['c'] = (dfg.apply(lambda x: x[0]), dfg.apply(lambda x: x[1]), dfg.apply(lambda x: x[2])) 

或者你知道更好的办法。告诉我。

如果这超出了我们讨论的范围,请告诉我。

非常酷的答案!谢谢Jesse和jaumebonet!以下是我对以下方面的一些观察:

邮政编码(*…… ... result_type = "扩大")

虽然expand更优雅(pandifyed),但**zip至少快2倍。在下面这个简单的例子中,我的速度快了4倍。

import pandas as pd

dat = [ [i, 10*i] for i in range(1000)]

df = pd.DataFrame(dat, columns = ["a","b"])

def add_and_sub(row):
    add = row["a"] + row["b"]
    sub = row["a"] - row["b"]
    return add, sub

df[["add", "sub"]] = df.apply(add_and_sub, axis=1, result_type="expand")
# versus
df["add"], df["sub"] = zip(*df.apply(add_and_sub, axis=1))